
Dyalog
Release Notes

Dyalog version 15.0

Dyalog is a trademark of Dyalog Limited

Copyright © 1982-2016 by Dyalog Limited

All rights reserved.

Version: 15.0

Revision: 2007 dated 20230217

Please note that unless otherwise stated, all the examples in this document assume that ⎕IO is 1, and ⎕ML is 1.

Nopart of this publicationmay be reproduced in any form by any means without the prior written per-
mission of Dyalog Limited.

Dyalog Limitedmakes no representations or warranties with respect to the contents hereof and spe-
cifically disclaims any impliedwarranties of merchantability or fitness for any particular purpose.
Dyalog Limited reserves the right to revise this publicationwithout notification.

email: support@dyalog.com
http://www.dyalog.com

TRADEMARKS:

SQAPL is copyright of Insight Systems ApS.

UNIX is a registered trademark of The OpenGroup.

Windows, Windows Vista, Visual Basic andExcel are trademarks of Microsoft Corporation.

Oracle and Java are registered trademarks of Oracle and/or its affiliates.

Mac OS® andOSX® (operating system software) are trademarks of Apple Inc., registered in the U.S.
and other countries.

Array Editor is copyright of davidliebtag.com

All other trademarks and copyrights are acknowledged.

iii

Contents

Chapter 1: Introduction 1
Key Features 1
Non Admin Installation 6
System Requirements 7
Inter-operability 8
Announcements 14
Performance Improvements 17
Bug Fixes 21

Chapter 2:Miscellaneous 27
Native Look and Feel 27
Editing Scripts and Text Files 30
Component Files without File Extensions 34
File Explorer Integration 35
IDE Enhancements 38
Including Script Files in Scripts 42
DateTime Enhancement 43
Other Changes 45

Chapter 3: LanguageReferenceChanges 47
Reduce 48
Random Link 51
Make Directory 55
Native File Delete 56
Native File Exists 57
Read Text File 58
Native File Information 60
File Name Parts 63
Write Text File 65

Chapter 4: I-BeamReferenceChanges 67
Canonical Representation 69
Compiler Control 70
Trap Control 73
Case Convert 74
Hash Array 75
Remove Data Binding 77
Create .NET Delegate 78

iv

Discard Thread on Exit 79
Discard Parked Threads 79
Manage RIDE Connections 80
Singular Value Decomposition 82

Chapter 5:ObjectReferenceChanges 83
DISPID (Dispatch ID) 84
GetFocusObj 85
SetEventInfo 86
SetFnInfo 89
SetPropertyInfo 92

Chapter 6:UNIX Specific Features 93
Summary 93

Index 97

Chapter 1: Introduction 1

Chapter 1:

Introduction

Key Features
Dyalog APL Version 15.0 provides the following new features, enhancements and
changes:

Installation
I t is now possible to install Dyalog without Administrator privileges, although there
are a number of consequential limitations. See Non Admin Installation on page 6.

Performance Improvements
Version 15.0 includes a considerable amount of research and development work
designed to substantially improve speed of execution. See Performance Improve-
ments on page 17.

Language Enhancements
New Language Features

l The Random Link system variable ⎕RL has been extended to specify the ran-
dom number generator. See Random Link on page 51. This enhancement
supersedes the use of and replaces the use of (16807⌶) which is deprecated
and will be removed in the next release.

l Catenate reduction has been extended to operate on empty arrays instead of
generating a DOMAIN ERROR. See Reduce on page 48.

Chapter 1: Introduction 2

l New system functions are provided to plug some gaps in the native file sub-
system. Like the existing native file functions, the new ones are portable
across all the operating systems supported by Dyalog, and obviate the need
for non-portable solutions (such as the use of the .NET classes for handling
directories). See File Name Parts on page 63, Make Directory on page 55,
Native File Delete on page 56, Native File Exists on page 57, Native File
Information on page 60, Read Text File on page 58 and Write Text File on
page 65.

l The native file functions ⎕NREAD and ⎕NREPLACE have been enhanced for
compatibility with APLX. The current file position may now be specified
by the value ¯1.

New I-Beam Features
l A new I-beam function transforms character arrays into lower or upper case
and is provided to optimise performance for these operations. See Case Con-
vert on page 74.

l A new I-beam function is provided to disassociate data binding from a data-
bound variable. See Remove Data Binding on page 77.

l Two new I-beams have been added to control when APL threads allocated
to incoming .NET calls are re-used or discarded. See Discard Thread on Exit
on page 79 and Discard Parked Threads on page 79.

l A new I-beam function is provided to control the error handling behaviour
of :Trap and ⎕TRAP. See Trap Control on page 73.

l A new I-beam function creates a hashed array on which dyadic ⍳ and other
set functions can be expected to perform faster. See Hash Array on page 75.

l The Dyalog compiler remains experimental but the I-beam to control it is
now documented. See Compiler Control on page 70.

l A previously undocumented I-beam is provided to obtain the APL code for
methods in classes. See Canonical Representation on page 69.

l A new I-beam is provided to identify the precise type of a delegate required
by a .NET method or property. See Create .NET Delegate on page 78.

l A new I-beam function is provided to assist with inverting matrices. See Sin-
gular Value Decomposition on page 82.

l Two new I-beams are provided to obtain information concerning files
loaded for editing or scripts fixed from file. See List Loaded Files on page 1
and Examples: on page 1.

l A new I-beam is provided to control connections to the RIDE. See Manage
RIDE Connections on page 80.

Chapter 1: Introduction 3

IDE Enhancements
l Native Look and Feeel is now enabled by default for the Dyalog Session
and for GUI applications. See Native Look and Feel on page 27.

l The Editor has been extended to allow you to edit Dyalog script files and
arbitrary text files. See Editing Scripts and Text Files on page 30.

l The Editor has a new Syntax menu. See Editor: Syntax Menu on page 39.
The Edit menu has two additional options. See Editor: Edit Menu on page
40.

l The Editor now has an option to identify lines of a function which failed to
compile. See Editor: Compiler Errors on page 41.

l The Options menu in the Session provides a new option to Disable sus-
pended :Trap blocks or localised ⎕TRAPs. See Disable traps in session on
page 38.

GUI Enhancements
l There is a new GetFocusObj method that identifies the GUI object which
currently has the input focus. GetFocusObj returns a ref to the object,
whereas GetFocus returns its name. See GetFocusObj on page 85.

l Native Look and Feel is now enabled by default; whereas previously it was
disabled.

l It is now possible to allocate values for the Dispatch ID (DISPID) of expor-
ted methods, properties and events of OLEServer and ActiveXControl
objects. See DISPID (Dispatch ID) on page 84.

Rationalisation of filename extensions
The process of rationalising filename extensions, which was begun in Version 14.1
with the introduction of theWSEXT parameter for workspaces, has been extended to
component files. See Component Files without File Extensions on page 34. This is
intended to simplify file naming conventions for cross-platform development.

Chapter 1: Introduction 4

.NET Interface Enhancements
l The I-beam functions Create Data Binding Source (2015⌶) and Update
Data Table (2010⌶) have been enhanced to handle DateTime data more
efficiently. In cases where the functions expect DateTime data, it is no
longer necessary to create instances of DateTime objects in the workspace.
Instead, the data may be represented by 7-element integer vectors (⎕TS
format) or character strings that can be parsed by the DateTime.Parse
(String) method. Using either form is typically faster than creating
DateTime objects in the workspace, especially for large arrays. This applies
only to Create Data Binding Source and Update Date Table. See Example
6a (Casting to DateTime) on page 1.

l When a .NET method/property/field etc. returns a null result, it is now rep-
resented by ⎕NULL. In previous versions of Dyalog a null result from a
.NET method generates a VALUE ERROR. Be aware that this may result in
your code returning a SYNTAX ERROR rather than a VALUE ERROR (as in
14.1 and earlier) in code such as (⎕NEW Window).Owner.Left

l The web.config file now includes a key DyalogBinDirectory to spe-
cify the location of the Dyalog .NET interface, the Dyalog DLLs and the
Dyalog script compiler. The web.config file installed in
samples\asp.net sets this to the directory that is identified by the
dyalog parameter. This new key allows different Dyalog ASP.NET applic-
ations to use different versions of Dyalog.

Including Script Files in Scripts
l There is a new :Require directive that if present must precede any code
(either a workspace script or a script file). A :Require statement instructs
Dyalog to load and fix a script file prior to processing the current script. See
Including Script Files in Scripts on page 42.

Chapter 1: Introduction 5

Unicode Encodings for ⎕S and ⎕R
The introduction of ⎕NGET and ⎕NPUT has caused some changes to ⎕S and ⎕R so
that they match. In particular, the InEnc, OutEnc and Enc options take the same
encoding values as ⎕NGET and ⎕NPUT use:

l UTF8 and other UTF encodings are now spelled UTF-8 etc (old spellings
are retained for backward compatibility)

l UTF-32 is a new addition
l UTF-16 and UTF-32 may optionally be qualified with BE or LE and assume
host endianness when omitted; previously the endianness had to be spe-
cified

l All UTF variants can be qualified with -BOM or -NOBOM when neither is
specified

l UTF-8 assumes -NOBOM and UTF-16/UTF-32 assume -BOM. Before only -
BOM was an option and not specifying was equivalent to -NOBOM. Note
that this means that the old UTF16LE and UTF16BE have changed their
behaviour: before there would have been no BOM, now there is.

l Windows-1252 "replaces" ANSI (ANSI is a synonym, but Windows-1252 is
the preferred name).

File Explorer Integration
Using Unicode Edition, it is now possible to browse workspaces and script (.dyalog)
files from the Windows File Explorer. Dyalog presents the contents of workspaces
and scripts in the File Explorer preview pane. In addition script files can be opened
from File Explorer using the standard Dyalog Editor, changed and re-saved; all
without starting Dyalog itself. See File Explorer Integration on page 35.

The facility to browse Dyalog script files in a preview pane extends to Microsoft
Outlook ,which will use Dyalog to preview such files when received as attachments
in emails.

This feature is not supported in Classic Edition.

Chapter 1: Introduction 6

Non Admin Installation
If you run the setup.exe program without Administrator rights, you are offered the
choice to continue or to restart the setup-exe program with Administrator priv-
ileges.

If you install Dyalog without Adminstrator privileges, the following limitations
apply:

l The APL 385 font is not installed. Dyalog will use the correct font, but no
other application will have access to it.

l The IME is not installed. Instead the keyboard is defined as a series of
Registry entries. This means that the Dyalog keyboard layout can be used
only with Dyalog and not with other software.

l No attempt is made to install the VS2015 redistributables globally; they are
therefore not available outside the interpreter unless they have been
installed beforehand.

l A non-administrator installation is available only to the user who performed
the installation; on a shared machine all users would have to perform a non-
administrator installation.

Dyalog APL is installed under your AppData directory, for example

c:\users\andys\AppData\Local\Programs\Dyalog\Dyalog APL 15.0 Unicode. Note
that the VS2015 redistributables will also be placed in this directory. The registry
entries for your version of Dyalog will appear under HKEY_CURRENT_USER\Soft-
ware\Dyalog.

Chapter 1: Introduction 7

System Requirements
Microsoft Windows
Dyalog APL Version 15.0 supports versions ofWindows fromMicrosoft Windows
Vista up to and including Microsoft Windows 10 and Microsoft Windows Server
2015. Dyalog APL Version 15.0 will not run on earlier versions.

Microsoft .NET Interface
Dyalog APL Version 15.0 .NET Interface requires Version 4.0 or greater of the
Microsoft .NET Framework. It does not operate with earlier versions of .NET.

For full Data Binding support (including support for the
INotifyCollectionChanged interface1), and Syncfusion, Version 15.0
requires .NET Version 4.5.

The examples provided in the sub-directory Samples/asp.net require that IIS is
installed. If IIS and ASP.NET are not present, the asp.net sub-directory will not be
installed during the Dyalog installation.

AIX and Linux
For AIX, Version 15.0 requires AIX 6.1 or higher, and a POWER5 chip or higher.

For x86 and x86-64 Linux, Version 15.0 is built on RedHat 6, and runs on all recent
distributions, including Ubuntu 14.01 and openSUSE 13.2. Contact Dyalog for
information about other platforms. Dyalog 15.0 on 32-bit Linux needs an Intel Pen-
tium 4 or better, or an AMD Opteron or Athlon 64 or better.

On the Raspberry Pi, Dyalog (32-bit Unicode) supports Raspbian Wheezy and Jessie.

Mac OS X
15.0 requires Mac OSX Yosemite onwards. The target Mac must have been intro-
duced in 2010 or later.

1This interface is used by Dyalog to notify a data consumer when the contents of a variable, that is
data bound as a list of items, changes.

Chapter 1: Introduction 8

Inter-operability
Introduction
Workspaces and component files are stored on disk in a binary format (illegible to
text editors). This format differs between machine architectures and among versions
of Dyalog. For example, a file component written by a PC may well have an internal
format that is different from one written by a UNIX machine. Similarly, a workspace
saved fromDyalog Version 15.0 will differ internally from one saved by a previous
version of Dyalog APL.

It is convenient for versions of Dyalog APL running on different platforms to be able
to interoperate by sharing workspaces and component files. FromVersion 11.0, com-
ponent files and workspaces can generally be shared between Dyalog interpreters run-
ning on different platforms. However, this is not always possible, for example:

l Component files created by Version 10.1 can often not be shared across plat-
forms, even when used by later versions.

l Small-span (32-bit) component files become read-only when opened on a
different architecture from that on which they were created.

Note however that the system function ⎕FCOPY can be used to make a logically
identical copy of an old file, but the copy will be fully inter-operable.

The following sections describe other limitations in inter-operability:

Code and ⎕ORs
Code that is saved in workspaces, or embedded within ⎕ORs stored in component
files, can only be read by the Dyalog version which saved them and later versions of
the interpreter. In the case of workspaces, a load (or copy) into an older version
would fail with the message:

this WS requires a later version of the interpreter.

Every time a ⎕OR object is read by a version later than that which created it, time
may be spent in converting the internal representation into the latest form. Dyalog
recommends that ⎕ORs should not be used as a mechanism for sharing code or objects
between different versions of APL

Chapter 1: Introduction 9

"Ordinary" Arrays
With the exception of the Unicode restrictions described in the following para-
graphs, Dyalog APL provides inter-operability for arrays that only contain (nested)
character and numeric data. Such arrays can be stored in component files - or trans-
mitted using TCPSocket objects and Conga connections, and shared between all
versions and across all platforms.

As mentioned in the introduction, full cross-platform interoperability of component
files is only available for large-span component files.

Null Items (⎕NULL)
⎕NULLs created in Version 15.0 can be brought into Versions 13.2, 14.0 and 14.1
provided that the interpreters have been patched to revision 27114 or higher.
Attempts to bring ⎕NULL into earlier versions will fail with a DOMAIN ERROR.

Object Representations (⎕OR)
FromVersion 13.2 onwards, an attempt to ⎕FREAD a component containing a ⎕OR
that was created by a later version of Dyalog APL will generate DOMAIN ERROR:
Array is from a later version of APL. This also applies to APL objects
passed via Conga or TCPSockets, or objects that have been serialised using 220⌶ .

32 vs. 64-bit Component Files
Large-span (64-bit-addressing) component files are inaccessible to versions of the
interpreter that pre-dated their introduction (versions earlier than 10.1).

From version 14.0 onwards it is no longer possible to create small-span (32-bit) files;
however it is still possible to read and write small span files. Setting the second item
of the right argument of ⎕FCREATE to anything other than 64 will generate a
DOMAIN ERROR.

Note that small-span (32-bit-addressing) component files cannot contain Unicode
data. Unicode editions of Dyalog APL can only write character data which would be
readable by a Classic edition (consisting of elements of ⎕AV).

External Variables
External variables are implemented as small-span (32-bit-addressing) component
files, and are subject to the same restrictions as these files. External variables are
unlikely to be developed further; Dyalog recommends that applications which use
them should switch to using mapped files or traditional component files. Please con-
tact Dyalog if you need further advice on this topic.

Chapter 1: Introduction 10

32 vs. 64-bit Interpreters
FromDyalog APL Version 11.0 onwards, there are two separate versions of programs
for 32-bit and 64-bit machine architectures (the 32-bit versions will also run on 64-
bit machines running 64-bit operating systems). There is complete inter-operability
between 32- and 64-bit interpreters, except that 32-bit interpreters are unable to work
with arrays or workspaces greater than 2GB in size.

Note however that underWindows a 32-bit version of Dyalog APL may only access
32-bit DLLs, and a 64-bit version of Dyalog APL may only access 64-bit DLLs. This
is a Windows restriction.

Unicode vs. Classic Editions
FromVersion 12.0 onwards, a Unicode edition is available, which is able to work
with the entire Unicode character set. Classic editions (a term which includes ver-
sions prior to 12.0) are limited to the 256 characters defined in the atomic vector,
⎕AV).

Component files have a Unicode property. When this is enabled, all characters will
be written as Unicode data to the file. The Unicode property is always off for small-
span (32-bit addressing) files, as these cannot contain Unicode data. For large-span
(64-bit addressing) component files, the Unicode property is set on by Unicode Edi-
tions and off by Classic Editions, by default. The Unicode property can subsequently
be toggled on and off using ⎕FPROPS.

When a Unicode edition writes to a component file that cannot contain Unicode
data, character data is mapped using ⎕AVU; it can therefore be read without problems
by Classic editions.

A TRANSLATION ERROR will occur if a Unicode edition writes to a non-Unicode
component file (that is either a 32-bit file, or a 64-bit file when the Unicode property
is currently off) if the data being written contains characters that are not in ⎕AVU.

Likewise, a Classic edition (Version 12.0 or later) will issue a TRANSLATION
ERROR if it attempts to read a component containing Unicode data that is not in
⎕AVU from a component file. Version 11.0 cannot read components containing
Unicode data and issues a NONCE ERROR.

A TRANSLATION ERROR will also be issued when a Classic edition)LOADs or
)COPYs a workspace containing Unicode data that cannot be mapped to ⎕AV using
the ⎕AVU in the recipient workspace.

Chapter 1: Introduction 11

TCPSocket objects have an APL property that corresponds to the Unicode property
of a file, if this is set to Classic (the default) the data in the socket will be restricted
to ⎕AV, if Unicode it will contain Unicode character data. As a result,
TRANSLATION ERRORs can occur on transmission or reception in the same way as
when updating or reading a file component.

The symbols ⍤, ⍠ and ⌸ used for the Rank, Variant and Key operators respectively
are available only in the Unicode edition. In the Classic edition, these symbols are
replaced by ⎕U2364, ⎕U2360 and ⎕U2338 respectively. In both Unicode and Clas-
sic editions Variant may be represented by ⎕OPT.

AVU changes
The implementation of the function Right in Version 13.0 led to the discovery that
⎕AVU incorrectly defined ⎕AV[59+⎕IO] as ¤ (⎕UCS 164) rather than ⊢ (Right
Tack, ⎕UCS 8866). This error has been corrected in the default ⎕AVU and in work-
space AVU.dws. If you are operating in a mixed Unicode/Classic environment, this
error will have caused earlier Classic editions to map ⎕AV[59+⎕IO] to the wrong
Unicode character (¤). This may cause TRANSLATION ERRORs when a Version
13.0 Classic system attempts to read the data, as it will not be able to represent ¤ in
the Atomic Vector.

DECFs and Complex numbers
Version 13.0 introduced two new data types; DECFs and Complex numbers.
Attempts to read components of these types in earlier interpreters will result in a
DOMAIN ERROR.

Very large array components
The maximum size (in bytes) of a component written by Version 12.1 and prior is
2GB. This is the size of the component as held on disk which may be different than
the size reported by ⎕SIZE. In Version 13.0 the maximum size of a component writ-
ten by a 64-bit interpreter is 4GB. FromVersion 13.2 onwards, the limit on the size of
arrays or components is so large that for most practical purposes, there is effectively
no limit.

An attempt to read a component greater than 2GB in 32-bit interpreters will result in
a WS FULL. An attempt to read such a component in 64-bit Versions 12.0 and 12.1
patched after 1st April 2011 will result in a NONCE ERROR; earlier patches generate
a FILE COMPONENT DAMAGED error.

Chapter 1: Introduction 12

File Journaling
Version 12.0 introduced File Journaling (level 1), and 12.1 added journaling levels 2
and 3 and checksumming. Versions earlier than 12.0 cannot tie files that have any
form of journaling or checksumming enabled. Version 12.0 cannot tie files with
journaling levels greater than 1, or checksumming enabled. Attempting to tie such
files will result in a FILE NAME ERROR. Files can be shared with earlier versions
by using ⎕FPROPS to amend the journaling and checksumming levels.

File Component Compression
Version 14.0 introduced File Component Compression; earlier versions will be able
to perform all file operation on such files with the exception of being able to
⎕FREAD or ⎕FCOPY any compressed component. In particular, it is possible for any
earlier version to ⎕FREPLACE a compressed component with a non-compressed one.

Dyalog 14.0.27143 and 14.1.27143 and later can read compressed components writ-
ten using 15.0. Attempts to read such components in lower levels of 14.0 and 14.1
will generate DOMAIN ERROR: Array is from a later version of
APL

Attempting to read a compressed component using versions of Dyalog APL earlier
than 14.0 will generate an error:

l All 13.2 and 13.1.14842 and later:
DOMAIN ERROR: Array is from a later version of APL

l 13.1 before revision 14842:
FILE COMPONENT DAMAGED: Incoming array is invalid

l 13.0 and 12.1 after revision 11154:
DOMAIN ERROR

l 13.0 and 12.1 before revision 11154:
FILE COMPONENT DAMAGED

TCPSockets and Conga
TCPSockets and Conga can be used to communicate between differing versions of
Dyalog APL and are subject to similar limitations to those described above for com-
ponent files.

Chapter 1: Introduction 13

Auxiliary Processors
A Dyalog APL process is restricted to starting an AP of exactly the same architecture
from the same operating system. In other words, the APmust share the same word-
width and byte-ordering as its interpreter process.

Session Files
Session (.dse) files can only be used on the platform on which they were created and
saved.

Chapter 1: Introduction 14

Announcements
Withdrawal of Support for Version 13.2
The supported Versions of Dyalog APL are now Version 15.0, 14.1, and Version
14.0. Version 13.2 and earlier are no longer supported.

Withdrawal of Support for Old Workspaces
Dyalog APL workspaces saved by Version 10.1 (released 2004) and earlier may not
be loaded using Version 15.0. Only workspaces saved by Version 11.0 and later may
be loaded. Contact Dyalog support if this affects you.

Withdrawal of Support for Windows XP
Version 15.0 is not supported underWindows XP.

Withdrawal of Support for .NET earlier than Version 4.
Version 15.0 requires .NET 4. As no other versions of .NET are supported, the .NET
Framework tab has been removed from the Options/Configure dialog.

dfns workspace now frozen in Classic Editions
Dyalog does not intend to enhance the dfns workspace in Classic Editions any more;
only bug fixes will be made. The workspace will continue to be developed for
Unicode Editions; the latest version of the dfns workspace is as ever available from
http://dfns.dyalog.com.

Planned Operating System Requirements for the next version
Dyalog Ltd expects that the next version of Dyalog will require the following min-
imum platform requirements:

Operating System Version

Microsoft Windows Vista or Server 2008

AIX 7.1 on POWER 7

Linux RedHat/Centos 6 or equivalent

OS X OS X Yosemite 10.10.x

Further information will appear on the Forums as and when available.

Chapter 1: Introduction 15

Planned Hardware Requirements for next version
The same as Dyalog 15.0.

C32 and C64 Calling Conventions
⎕NA used to support syntax such as dllname.C32, which specified that 32-bit call-
ing conventions were to be used.

This has not been necessary for several versions; in Version 15.0 the interpreter
checks that if this syntax is present and that it is one of .C32 or .C64, but otherwise
ignores it.

Dyalog intends to remove all traces of this syntax from supplied APL code (either in
workspaces or in scripts) and it is recommended that users do the same. Dyalog may
in future generate an error when this syntax is found, rather than simply ignoring it.

Copies of the files namespace and code that manipulates the registry are most
likely to contain this syntax.

Default Value for Random Link ⎕RL
The default value for ⎕RL will be changed to ⍬ in the next major release.

Withdrawal of Random Number Generator I-Beam 16807⌶
The RandomNumber Generator I-Beam 16807⌶ is deprecated and will be removed
in the next release.

SharpPlot workspace (Classic Edition)
The sharpplot.dws workspace is no longer supported in Classic Edition and has
been removed from the Classic Edition build.

Array Editor
Version 1.1.0.91 of the Array Editor is included in the Unicode version 15.0 forWin-
dows installation images.

Syncfusion libraries
Version 14.1.0.41 of the Syncfusion libraries are included in the version 15.0 forWin-
dows installation images.

dyalogdata4.5.dll
dyalogdata4.5.dll is no longer needed. The bridge dll has been compiled with
.NET 4.0 which includes the required functionality.

Chapter 1: Introduction 16

The use of GR to mean German
For reasons that are over 20 years old, the BuildSE workspace and the input and out-
put translate tables in Classic installations use the abbreviation "GR" to represent
"German". In the next version Dyalog intends to replace all such occurrences with
"DE".

WSEXT parameter
The default value forWSEXT on non-Windows platforms has been changed so that
it favours extensions. On AIX and Linux the defaultWSEXT is now .dws:.DWS:;
on OS X it is .dws:.

Trailing directory delimiters
In version 15.0 all environment variables or registry entries which contains a dir-
ectory or directories have been made consistant in that there are no trailing directory
delimeter. This affects the dyalog registry entry.

Namespaces and External Variables
From version 15.0 onwards it is no longer possible to assign namespaces and other
⎕NL 9 objects, nor the ⎕OR of such objects to external variables. Earlier versions
could make such assignments, but were apt to lead to APL terminating abnormally,
or the external variable on disk not being correctly updated.

Chapter 1: Introduction 17

Performance Improvements
As part of the ongoing Performance Quality Assurance project 1 , Version 15.0
includes a number of performance improvements as summarised in the following
table.

Expression Factor Comments

↑x 5-12 for elements with the same rank and same shape
with possible exception of leading axis

↓x 1-1.75 AKA ⊂⍤1⊢x

⊂⍤r⊢x 1-1.75 AKA ⊂[(-r)↑⍳⍴⍴x]x

↓[a]x 1.5-5

⍕b 1-40

⍕int8 1-10

x⍕b 1-300 for x having 1 or 2 elements

x⍕int8 1-180 for x having 2 elements, the first of which is non-
zero

b∘.f x 1-8

b⊥b 3-∞ equivalent to +/∧\⌽b, the number of trailing 1s in
b

b(≢¨⊂)x TBA partition pseudo operator

b(f/¨⊂)x TBA partition pseudo operator, for f one of + × ⌈ ⌊ ∧
∨ ≠ =

>/b
≥/b
⍱/b
⍲/b
</b
≤/b

1800-
87e3

∧/b
∨/b

1-∞

1http://www.dyalog.com/blog/2016/03/pqa/

http://www.dyalog.com/blog/2016/03/pqa/

Chapter 1: Introduction 18

Expression Factor Comments

+/b 1-8

,/y 1-∞ for arguments with arrays with rank > 1

2 f/ x 1.2-4 for vector x and f one of + - × ⌈ ⌊ = ≠ < ≤
≥ = ∨ ∧ ⍲ ⍱

n,/[a]x 1-50 for simple array x

n+/[a]x
n≠/[a]b
n=/[a]b

TBA

n⌈/[a]x
n⌊/[a]x

TBA

x∘.,y 2-4

∧.∧
∨.∨

5-∞ for boolean vector arguments

x⍳⍤1 0⊢y 13

x⌷⍤r⊢y 1-370 where the effective left rank is 0

b[; ;i]
b[i]

1-4 boolean column indexing and boolean vector
indexing

x[i; ;] 2-18 row (major cell) indexing AKA (⊂i)⌷xAKA
i⌷⍤0 15⊢x

+z,
-z
y+z
y-z
○z

1-6 complex arguments; greatest speed-ups are only on
Linux

x≡y
x≢y

1-8.7 64-bit floats or complex arguments

x≡y
x≢y

1-1.4 non float simple arguments

x⊥y 1-26 special case for scalar or vector x

x⊤y 1-3.3 special case for integer vector x and integer y

f\[a]x 2-20 f is + × (deferred from 14.0)

Chapter 1: Introduction 19

Expression Factor Comments

-\[a]x
÷\[a]x

1-∞

⍺⍕⍵
⍺ ⎕FMT ⍵

varies E F and I formats, non-DECF data

⍋p 10-50 for permutations

⍒p 10-50 for permutations

⍋⍵
⍒⍵

1-1.7 result in smallest datatype

⍋⍵
⍒⍵

2-20 for small-range arguments

÷⍵ 1-1.1 for non .NET systems only

≡⍵ 2-∞

{⍺,f⌿⍵}⌸
{⍺(f⌿⍵)}⌸

TBA for f one of + ⌈ ⌊ = ≠ ∨ ∧

x*b 1-90 scalar x and boolean b

f⍤r 1-1.5 general case of rank operator on small arguments

f⌸ 1-1.8 general case of key operator on small arguments
and/or in monadic case

f.g 1-1.6 general case of inner product

f¨ f is any monadic or dyadic scalar function

≢¨⍵ 25

f/¨⍵ 1-16 f one of + ⌈ ⌊ ∧ ∨ = ≠

⍺+.×⍵ 1-11 boolean vector and boolean array ; also +.∧

⍺+.f ⍵ 4 boolean array and boolean vec ⍵, for f one of ×
∧ > < ≠ ∨ ⍱ = ≥ ≤ ⍲

⌈/⍵
⌊/⍵

1-29 for non-vector ⍵

+/x 6-35 for integer x

0∊b
1∊b

1-400

Chapter 1: Introduction 20

Expression Factor Comments

⌽[a]x 1-3.7

⍋b
{⍵[⍋⍵;]}b

1-7 also ⍒ instead of ⍋; for boolean b with a multiple of
8 columns

⍋b
{⍵[⍋⍵;]}b

1-5 also ⍒ instead of ⍋; for boolean b with 1-element
major cells

⍋b
{⍵[⍋⍵;]}b

5-27 also ⍒ instead of ⍋; for boolean b with NOT a
multiple of 8 columns

?m⍴n 1.1-1.4 result is smallest datatype based on n >

x∧.=1 1-100 also 1∧.=x, x∨.≠1, 1∨.≠x; also 0 instead of 1

⍉bm 1.2 POWER8 only, transposing a matrix with multiple
of 8 rows and columns

y∊x 3-17 where x and/or y have 1- or 2-byte items

y~x 3-12 where x and/or y have 1- or 2-byte items

y∩x 3-12 where x and/or y have 1- or 2-byte items

x∪y 3-13 where x and/or y have 1- or 2-byte items

∪x 3-16 where x has 1- or 2-byte items

New Idiom
The following new idiom is recognised:

Expression Description

XA↓⍨←NS

This idiom applies only when NS is negative,
when it removes the last -NS items from XA
along its leading axis. For example, if NS is
¯3 then the idiom removes the last -¯3 (i.e.
3) items.

Chapter 1: Introduction 21

Bug Fixes
A number of bug fixes implemented in Version 15.0 may change the way that exist-
ing code operates and are therefore documented in this section.

011659: Modified, selective assignment returns wrongly
enclosed result
In 14.1 and earlier the interpreter incorrectly enclosed the result of a modified, select-
ive assignment. This has been fixed in 15.0.

15.0 behaviour:

var←⊂'Dyalog'
'APL'≡(⊃var),←'APL'

1
var

DyalogAPL

14.1 and earlier behaviour:

var←⊂'Dyalog'
'APL'≡(⊃var),←'APL'

0
var

DyalogAPL

Change to Component File Names
There were exceptions to the following rules which have been corrected:

l The file name returned by ⎕FNAMES should be precisely the same as that
which was specified when the file was tied.

l The left argument to ⎕FERASE should be identical to the name used to tie
the file.

Examples of errors that have been fixed in Version 15.0
t←'a.DCF' ⎕TIE 0 ⋄ ⎕FNAMES

a ⍝ WAS INCORRECT, SHOULD BE a.DCF

t←'a' ⎕FTIE 0 ⋄ 'a.DCF' ⎕FERASE t
⍝ INCORRECTLY DELETED THE FILE

t←'a.DCF' ⎕FTIE 0 ⋄ 'a' ⎕FERASE t
⍝ INCORRECTLY DELETED THE FILE

Length of left argument of ⎕WC limited to 2*15

Chapter 1: Introduction 22

The maximum length of the left argument of WC is now limited to 2*15 in order to
eliminate a number of system crashes.

Change to User-Defined Event Message
Previously, if you created a GUI object using ⎕NEW to which you attached a user-
defined event, the first element of the event message (that identifies the object) repor-
ted for that event was a generic character vector. It is now a ref.

f←⎕NEW ⊂'Form'
f.on999←'foo'

∇ foo m
[1] m

∇

⎕NQ f 999
#.[Form] 999

Chapter 1: Introduction 23

Correction to ⎕FIX
⎕FIX now handles the inheritance of system variables by sub-namespaces correctly.

Example:
script←':Namespace ML2' '⎕ML←2'
script,←':Namespace NOML' ':EndNamespace'
script,←⊂ ':EndNamespace'
↑script

:Namespace ML2
⎕ML←2
:Namespace NOML
:EndNamespace
:EndNamespace

⎕ML←1
⎕FIX script
ML2.NOML.⎕ML

2

In Version 14.1, ML2.NOML.⎕ML is 1.

dfns no longer accept 3 or more colons in statements
In version 14.1 and earlier expressions such as

{1::::3}

were treated as valid. In version 15.0 such expressions will generate a
SYNTAX ERROR.

Change to behaviour of selective modified assignment
In version 14.1 and earlier the result of some selective modified assignments was
incorrectly nested. This has been fixed in 15.0. For example in 14.1:

text←⊂'Dyalog '
'APL'≡(⊃text),←'APL'

0

In version 15.0 the result is correctly not enclosed:

text←⊂'Dyalog '
'APL'≡(⊃text),←'APL'

1

Chapter 1: Introduction 24

Comparisons involving the prototype of Null Item
In version 14.1 and earlier expressions such as

(0⍴⎕NULL)≡0⍴⎕NULL

or

⎕null≡⊃0⍴⎕null

incorrectly generated NONCE ERRORs. In version 15.0 onwards the above expres-
sions both return 1.

Note that comparisons involving the prototype of # or ⎕SE will still generate a
NONCE ERROR.

Classic Edition: 'UTF-8'⎕UCS errors
In version 14.1 and earlier in Classic interpreters an attempt to convert an invalid
UTF-8 sequence into a Unicode code point resulted in a TRANSLATION ERROR. In
15.0 onwards a TRANSLATION ERROR is only generated if the resulting (valid)
Unicode code point is not in ⎕AVU. Attempts to convert invalid UTF-8 sequences
generate DOMAIN ERRORs; the same behaviour as in Unicode interpreters.

Debug modifier for user commands
Having run]udebug on to enable debugging user commands, the user command
must be called with "-" as the last modifier. That is, the "-" must be preceded by at
least one space. If there is no space the "-" is assumed to be part of the preceding mod-
ifier or flag. In previous versions of SALT the "-" was treated as an instruction to
debug the user command whether or not it is preceded by a space.

Chapter 1: Introduction 25

⎕SI and ⎕XSI can return the wrong name when an inner dfn is
called via an operator
In earlier versions of Dyalog ⎕SI and ⎕XSI could return the wrong name when an
inner dfn is called via an operator; ⎕LC would however report the correct line num-
bers. This has been fixed in Version 15.0.

Example
∇r←hoo;foo;goo;dop
dop←{

r←1
+⍺⍺ ⍵

}
foo←{
⍝ comment
⍝ comment1
⍝ comment2
⍝ comment3
⍝ comment4

goo←{
+{

⎕XSI,¨⎕LC
}⍵

}
+goo dop ⍵

}
r←foo 1

∇
hoo ⍝ Version 15.0

#.foo 8 #.foo 7 #.dop 2 #.foo 11 #.hoo8 18
hoo ⍝ Version 14.1 and prior. Wrong.

#.goo 8 #.goo 7 #.dop 2 #.foo 11 #.hoo 18

Chapter 1: Introduction 26

Chapter 2: Miscellaneous 27

Chapter 2: Miscellaneous

Native Look and Feel
Native Look and Feel is a Dyalog option that affects the appearance of the controls
provided by the Dyalog GUI Interface and those used by the Dyalog Session. It is
implemented by the XPLookAndFeel parameter.

Most of the Dyalog controls (with the notable exception of the Dyalog Grid) are
standard Windows user-interface components provided by the Windows Common
Controls library comctl32.dll. Successive versions ofWindows have introduced
new versions of the Windows Common Control Library which typically provide
additional features as well as certain differences in appearance. However, each ver-
sion ofWindows continues to support older versions of the Common Control Library
as well as the latest one. The decision as to which is loaded is made at run-time.

A second factor that affects the appearance of user-interface controls is the applic-
ation of Visual Styles1 and Themes. These features enable users to tailor the UI to
accommodate their individual needs and preferences. FromWindows 8 onwards, the
default appearance of certain Common Controls is overridden by the Visual Styles in
use. However, this applies only ifNative Look and Feel is enabled.

IfNative Look and Feel is enabled, Windows loads the latest version of
comctl32.dll (and potentially otherWindows dlls) that is appropriate for the ver-
sion ofWindows in use. IfNative Look and Feel is disabled, an earlier version may
be loaded. The specific version that is loaded is not determined by Dyalog, but by
Windows.

The Dyalog for MicrosoftWindows Object Reference Guide identifies which fea-
tures require Native Look and Feel to be enabled. It documents the typical appear-
ance of controls withNative Look and Feel disabled but does not specify how the
appearance of controls is affected by enabling Native Look and Feel, which is in
any case affected by the Visual Styles selected by the user.

1See msdn.microsoft.com for details.

Chapter 2: Miscellaneous 28

The following pictures illustrate the appearance of a simple Button created with and
without Native Look and Feel underWindows 10.

The next shows the appearance of ToolButttons with Style Buttons underWin-
dows 10 with Native Look and Feel disabled. The appearance is the same in earlier
versions ofWindows.

When Native Look and Feel is enabled, the buttons become transparent and Win-
dows applies the Visual Styles associated with the current theme. This in turn implies
that with Native Look and Feel enabled the Styles Button and FlatButton have
the same appearance.

Chapter 2: Miscellaneous 29

Native Look and Feel and the Dyalog Session
During development, both the Dyalog Session and the Dyalog APL GUI will display
native style buttons, combo boxes, and other GUI components ifNative Look and
Feel is enabled. The option is provided in the General tab of the Configuration dia-
log and in Version 15.0 onwards is enabled by default.

Furthermore, from Version 14.1 onwards, the appearance of the Session tool buttons
on the Session, Editor, Tracer and other windows is different according to whether or
not Native Look and Feel is enabled.

Native Look and Feel Enabled

Native Look and Feel Disabled

Chapter 2: Miscellaneous 30

Editing Scripts and Text Files
The Editor may also be used to edit Dyalog script files (.dyalog files) and general
text files.

There are two ways to choose the file to be edited. If the file exists, you can select it
from the Open source file dialog by clicking File/Edit Text File from the Session
menu bar.

Alternatively, type)ED followed by the pathname to the file. To identify the name
given as a file, it must either contain a slash character ("\" or "/") or be preceded by
one.

Examples
)ED c:\Dyalog15.0\myscript.dyalog

)ED c:\Dyalog15.0\pete.txt

)ED /x.txt ⍝ x.txt in current directory

)ed / x.txt ⍝ ditto

)ed / y ⍝ y in current directory

If the named file does not exist, you will be asked whether or not you want to create
it:

If you edit a Dyalog script file, the editor will treat it as such and provide the same
formatting and syntax colouring as if it were a script in the workspace.

Otherwise, the file will be edited as if it were a character vector with embedded new-
lines.

When you exit the editor with Exit and fix, you will be offered a number of altern-
atives depending upon the type of file, as shown below.

Chapter 2: Miscellaneous 31

Saving a Text file.

Note that if you choose Save as text in the workspace, information about the file and
the text variable associated with it is retained in the workspace. This information
may be obtained using 5176⌶ and 5177⌶. See Language Reference Guide: List
Loaded Files and List Loaded File Objects.

Chapter 2: Miscellaneous 32

Saving a Script file.

Note that if you choose Fix as code in the workspace or Save as text in the
workspace, information about the file and the text variable associated with it is
retained in the workspace. This information may be obtained using 5176⌶ and
5177⌶. See Language Reference Guide: List Loaded Files and List Loaded File
Objects.

Chapter 2: Miscellaneous 33

Fix as code in the workspace
If you choose this option, the file will be updated and the script will also be fixed in
the workspace. Note that if the script refers to a base class or other external elements,
it cannot be fixed unless these elements are also present in the workspace.

Save as text in the workspace
If you choose this option, the file will be updated and the contents of the file will
also be saved to a variable in the workspace. First you will see the following warning
dialog, which may be disabled subsequently by checking Do not ask this question
again.

Then you will be prompted to supply its name, which may be a new name or the
name of an existing variable:

Only save file to disk
If you choose this option, the file will be updated but nothing will be changed in the
workspace.

Discard changes
If you choose this option, all changes will be discarded and nothing saved.

Chapter 2: Miscellaneous 34

Component Files without File Extensions
When locating a component file where no file name extension has been explicitly
provided, the new CFEXT parameter is used to identify the corresponding file.

This parameter specifies component file filename extensions.

CFEXT is a string that specifies a colon-separated list of one or more extensions,
including any period (".") which separates the extension from its basename.

If undefined, CFEXT defaults to .dcf: on Windows and OSX, and .dcf:.DCF:
on all other platforms.

Creating a Component File
If the new file name specified for ⎕FCREATE, ⎕FCOPY or ⎕FRENAME contains no
extension, the first extension in CFEXT will be added.

Tieing a Component File
If the component file name specified for ⎕FTIE, ⎕FSTIE or ⎕FCHK does not end
with a file extension, the corresponding file is located by appending the specified file
name with each extension in CFEXT in turn until the file is found.

Consequential Change to ⎕FLIB
As a result of the implementation ofCFEXT, ⎕FLIB now reports all file extensions.
Previously, ⎕FLIB removed "standard" file extensions .dcf and .DCF.

Chapter 2: Miscellaneous 35

File Explorer Integration
Unicode Edition Only
You can browse the contents of workspaces and Dyalog script files using the pre-
view pane ofWindows File Explorer. The following example show what you see in
the preview pane when you select the supplied workspace ddb.dws.

When you move the cursor to the next workspace in the list, dfns.dws, the preview
pane is immediately updated to show its contents.

Chapter 2: Miscellaneous 36

If you open the Fns/Ops node and click on a function name, the function is dis-
played. The next picture shows the function assign.

You can also browse Dyalog script files. The following picture shows what you see
when you select the fileUtils.dyalog file.

Note that you may only view workspace objects and scripts in the preview pane, it is
not possible to edit them in the preview pane.

Chapter 2: Miscellaneous 37

Editing Dyalog Scripts
You may edit a script file from File Explorer by first selecting the script file and then
choosing Edit from the File Explorer context menu.

This brings up the standard Dyalog Editor, in a stand-alone window, just as it would
appear if undocked from the Session, as shown in the next picture.

Chapter 2: Miscellaneous 38

IDE Enhancements
Disable traps in session
There is a new menu item on the Optionsmenu labelled Disable traps in session.
This is designed to prevent undesirable behaviour when an expression executed in
the session inadvertently triggers a suspended trap expression.

This option has no effect on the behaviour of error-guards in dfns.

If there is a suspension on the stack and the suspended code is within a :Trap block
or contains a localised ⎕TRAP, this option disables the trap.

Example
∇ r←Recip x

[1] :Trap 11
[2] r←÷x
[3] :Else
[4] r←1
[5] :EndTrap

∇

Recip 3
0.3333333333

Recip 0
1

2 ⎕STOP 'Recip'
Recip 0

Recip[2]
)SI

#.Recip[2]*

Chapter 2: Miscellaneous 39

Now there is a suspended :Trap on the stack set to fire when a DOMAIN ERROR
(error number 11) is generated.

This can lead to undesirable behaviour if an expression executed directly in the Ses-
sion, or within a function executed from the Session, causes a DOMAIN ERROR.

In Versions prior to Version 15.0, or if the new option to Disable traps in the session
is OFF, any expression that generates a DOMAIN ERROR will invoke the suspended
:TRAP. In this case, that will cause the suspended function to execute the :Else
clause and return the value 0.

'a'+2
1

However, if the option to Disable traps in the session is ON, the system will ignore
the :Trap and the DOMAIN ERROR will be handled as if it were not there:

'a'+0
DOMAIN ERROR

'a'+2
∧

Note that this behaviour can also be controlled by calling 600⌶. See Trap Control
on page 73.

Editor: Syntax Menu
There is a new Syntax Menu for the Editor.

The Syntaxmenu illustrated above provides options to specify how the data dis-
played in the Editor window is to be syntax coloured. For workspace objects, the
default is APL for functions and operators, and Nothing for variables.

Item Syntax Colour as

Nothing Variable

APL Function

JSON JSON array

XML XML array

Chapter 2: Miscellaneous 40

Editor: Edit Menu
There are two new options on the Edit menu of the Editor.

Item Description

Reformat Scripts
Automatically

If checked, the Editor will automatically reformat a
Dyalog script when it loads it.

Highlight All
Matches

If checked, all strings in the object being edited that
match the search string are highlighted. The highted
items change dynamically as the seacrh string is
entered or changed.

Chapter 2: Miscellaneous 41

Editor: Compiler Errors
The View Menu of the Editor now has an option Compiler Errorswhich, if enabled,
identifies which lines of a function failed to compile.

Aligning Comments
Comments which are preceded only by white space (i.e. in lines which contain no
executable code) are ignored (remain unaltered) when comments are aligned, unless
only such lines are selected.

Hitting <F1> immediately to the right of ⎕ or :
In earlier versions on Windows, hitting <F1> on or immediately to the right of a ⎕ or
: result in the help system being opened for ⎕ or : respectively. In version 15.0 the
help system will be opened for the system object or control structure respectively.

Altering the hint on SysTray icons
"SysTray" has been added to the list ofWindow Names for which the caption can be
set. This defines the hint that appears when hovering over Dyalog icons in the Sys-
tem Tray, and can be used to identify more easily which icon is associated with
which Dyalog process. Dyalog suggests including "{PID}" to the caption of both the
SysTray and the Session. See Installation & Configuration Guide: Window Cap-
tions.

Chapter 2: Miscellaneous 42

Including Script Files in Scripts
A Class or Namespace script in the workspace or in a script file may specify that
other script files are to be loaded prior to the fixing of the script itself. To do so, it
must begin with one or more :Require statements, with the following syntax:

:Require file://[path]/file

If no path is specified, the path is taken to be relative to the current script file or, if
in a workspace script, the current working directory. Note that a leading './' or
'.\' in path is not allowed, to avoid any potential confusion with "current dir-
ectory".

:Require is a directive to the Editor (more specifically, to the internal mechanism
that fixes a script as an object in the workspace) and can appear in any script con-
taining APL code, butmust precede all code in the script. :Require is thus not
valid within a function, class, namespace or any other definition.

The prefix file:// allows for the possibility of a future extension of http://
and ftp://.

In version 15.0 ⍝!:require is a synonym for :Require. This allows the user to
create scripts which can be used in multiple versions of Dyalog; in 14.1 and earlier
SALT parses ⍝!:require statements and loads the appropriate files, in 15.0 it is
the interpreter loads the file named in ⍝!:require statements. Dyalog intends to
remove support for the ⍝!:require statement from the interpreter in a future ver-
sion. Note that unlike :Require, ⍝!:require can appear within code.

Chapter 2: Miscellaneous 43

DateTime Enhancement
To illustrate the extension for DateTime objects, the following example has been
added to the section on Data Binding in the chapter on Windows Presentation
Foundation in the .NET Interface Guide: .

Example 6a (Casting to DateTime)
This example is similar to Example 6 but illustrates how numeric data in ⎕TS format
can be converted to DateTime type.

The XAML
The XAML shown below describes a Window containing a StackPanel, inside
which is a ListBox.

<Window

xmlns="http://schemas.microsoft.com/winfx/2006/xaml/presentation"
xmlns:x="http://schemas.microsoft.com/winfx/2006/xaml"
Title="DateTimes using TS data"
SizeToContent="WidthAndHeight" >
<StackPanel>

<TextBlock Text="Some High Tides at Portsmouth, England"
FontSize="18" Margin="5"/>
<ListBox Name="TideTimes" Height="200"
Margin="5" />

</StackPanel>
</Window>

The APL Code
The function Tides is shown below.

∇ Tides;⎕USING;win;dt;Highs
[1] ⎕USING←'System'
[2] win←LoadXAML XAML_Tides
[3] win.times←win.FindName⊂'TideTimes'
[4] Highs←(⊂2016 2 18),¨(7 9)(8 44)(19 47)(21 47)
[5] Highs,←(⊂2016 2 19),¨(8 17)(10 12)(20 51)(22 51)
[6] dt←7↑¨Highs
[7] win.times.ItemsSource←DateTime(2015⌶)'dt'
[8] sink←win.ShowDialog

∇

Chapter 2: Miscellaneous 44

Tides[3] uses FindName to obtain a ref to the ListBox (defined in the XAML)
named TideTimes:

[3] win.times←win.FindName⊂'TideTimes'

Tides[4-5] creates a vector of integer vectors each of which species the time and
date of a high tide at Portsmouth. Tides[6] extends each to 7-elements, which is
required to represent a DateTime object.

Then, Tides[7] creates a binding source object from this array and assigns it to the
ItemsSource property of the ListBox. Note that the left argument DateTime
specifies that the data be cast to that type.

[7] win.times.ItemsSource←DateTime(2015⌶)'dt'

Testing the Data Binding
)LOAD wpfintro
DataBinding.NetObjects.Tides

Chapter 2: Miscellaneous 45

Other Changes
Changes to ⎕R and ⎕S
The PCRE engine used to support ⎕R and ⎕S has been upgraded from version 8.12 to
8.37 and includes a number of bug fixes in the engine. The full list of changes to the
engine is at: http://pcre.org/original/changelog.txt.

The options InEnc and OutEnc have been changed to provide compatibility with
⎕NGET and ⎕NPUT.

⎕R and ⎕S now support the specification of characters in transformation strings using
the syntax \x{nnnn}, i.e.

\x
{nnnn}

represents a Unicode code point; nnnn is a hexadecimal sequence
of characters yielding a value between 0x1 and 0x0FFFFFFF.

Change to)SI
As a consequence of performance improvements, certain primitive operators includ-
ing Commute, Axis and some cases of Outer Product are no longer reported by)SI
and ⎕STACK.

Version 15.0 Version 14.1 and Prior

2 foo⍨ 3
SYNTAX ERROR
foo[2] ∘

∧
)SI

#.foo[2]*
⎕STACK
*

∇foo
*

2 foo⍨ 3
SYNTAX ERROR
foo[2] ∘

∧
)SI

#.foo[2]*
⍨

⎕STACK
*

∇foo
⍨
*

http://pcre.org/original/changelog.txt

Chapter 2: Miscellaneous 46

Chapter 3: Language Reference Changes 47

Chapter 3:

Language Reference Changes

Language Changes
The following table summarises the main changes to language features in Version
15.0.

Function Descritpion Change

R←f/[K]Y Reduce Enhanced

⎕RL Random Link Enhanced

⎕MKDIR Make Directory NEW

⎕NDELETE Native File Delete NEW

⎕NEXISTS Native File Exists NEW

⎕NGET Read Text File NEW

⎕NINFO Native File Information NEW

⎕NPARTS File Name Parts NEW

⎕NPUT Write Text File NEW

Chapter 3: Language Reference Changes 48

Reduce R←f/[K]Y

fmust be a dyadic function. Ymay be any array whose items in the sub-arrays along
the Kth axis are appropriate to function f.

The axis specification is optional. If present, Kmust identify an axis of Y. If absent,
the last axis of Y is implied. The form R←f⌿Y implies the first axis of Y.

R is an array formed by applying function f between items of the vectors along the
Kth (or implied) axis of Y. For a typical vector Y, the result R is:

R ←→ ⊂(1⊃Y)f(2⊃Y)f......f(n⊃Y)

The shape S of R is the shape of Y excluding the Kth axis, i.e

S ←→ ⍴R ←→ (K≠⍳⍴⍴Y)/⍴Y

If Y is a scalar then for any scalar f, R is Y.

If the length of the Kth axis of Y is 1, or if the length of any other axis of Y is 0, then f
is not applied and R is S⍴Y.

Otherwise, if the length of the Kth axis is 0 then the result depends on f and on ⊃Y
(the prototypical item of Y) as follows:

If f is one of the functions listed in the table below then R is S⍴⊂I,
where I is formed from ⊃Y by replacing each depth-zero item of ⊃Y
with the identity item from the table.

Otherwise, if f is Catenate along the Jth (specified or implied) axis, R
is S⍴⊂0/[J]⊃Y.

Otherwise, DOMAIN ERROR is reported.

Chapter 3: Language Reference Changes 49

Table 1: Identity Elements
Function Identity

Add + 0

Subtract - 0

Multiply × 1

Divide ÷ 1

Residue | 0

Minimum ⌊ M1

Maximum ⌈ -M

Power * 1

Binomial ! 1

And ∧ 1

Or ∨ 0

Less < 0

Less or Equal ≤ 1

Equal = 1

Greater > 0

Greater or Equal ≥ 1

Not Equal ≠ 0

Encode ⊤ 0

Union ∪ ⍬

Replicate /⌿ 1

Expand \⍀ 1

Rotate ⌽⊖ 0

1M represents the largest representable value: typically this is 1.7E308, unless ⎕FR is 1287, when
the value is 1E6145.

Chapter 3: Language Reference Changes 50

Examples
∨/0 0 1 0 0 1 0

1
MAT

1 2 3
4 5 6

+/MAT
6 15

+⌿MAT
5 7 9

+/[1]MAT
5 7 9

+/(1 2 3)(4 5 6)(7 8 9)
12 15 18

,/'ONE' 'NESS'
ONENESS

+/⍳0
0

(⊂⍬)≡,/⍬
1

(⊂'')≡,/0⍴'Hello' 'World'
1

(⊂0 3 4⍴0)≡⍪/0⍴⊂2 3 4⍴0
1

Chapter 3: Language Reference Changes 51

Random Link ⎕RL

⎕RL is a 2-element vector. Its second element is an integer that identifies the random
number generator that is currently in use, and its first element contains the base or
seed. Together these items define how the system generates random numbers using
Roll and Deal.

In a clear ws, the second element of ⎕RL is 1, and the first element is initialised to
the value defined by the default_rl parameter which itself defaults to 16807 if it is
not defined.

Note:
The facility to select the random number generator by assignment to ⎕RL is a new fea-
ture in Version 15.0 and replaces the use of (16807⌶). This function is deprecated
and will be removed in the next release.

Random Number Generators
The 3 random number generators are listed in the table below. The 4th column of the
table contains the values of seeds that may be assigned to them.

Id Name Algorithm Valid Seed Values

0 RNG0 Lehmer linear
congruential generator.

0, ⍬, or an integer in the range 1 to
¯2+2*31

1 RNG1 Mersenne Twister.
0, ⍬, an integer in the range 1 to
¯2+2*31 or a 625-element integer
vector

2 RNG2
Operating System
random number
generator.

⍬

The default random number generator in a CLEAR WS is 1 (Mersenne Twister). This
algortithm RNG1 produces 64-bit values with good distribution.

The Lehmer linear congruential generator RNG0 was the only random number gen-
erator provided in versions of Dyalog APL prior to Version 13.1. The imple-
mentation of this algorithm has several limitations including limited value range
(2*31), short period and non-uniform distribution (some values may appear more
frequently than others). It is retained for backwards compatibility.

Chapter 3: Language Reference Changes 52

UnderWindows, the Operating System random number generator algorithm RNG2
uses the CryptGenRandom() function. Under UNIX/Linux it uses
/dev/urandom.

Random Number Sequences
Random number sequences may be predictable or not and repeatable or not. A pre-
dictable and repeatable sequence is obtained by starting with the same specific value
for the seed. A non-predictable sequence is obtained by starting with a seed which is
itself chosen at random, but such a sequence is repeatable if the value of the seed
(chosen at random) is visible. A non-predictable and non-repeatable sequence of ran-
dom numbers is obtained where the initial seed is chosen completely at random and
is unknown.

Using RNG0 or RNG1:

l To obtain an entirely predictable random sequence, set the seed to a non-
zero value

l To obtain a non-predictable, but repeatable sequence, set the seed to 0
l To obtain a non-predictable, non-repeatable series of random numbers, set
the seed to ⍬

RNG2 does not support a user modifiable random number seed, so when using this
scheme, it is not possible to obtain a repeatable random number series and the seed
must always be ⍬.

Performance Note:
If the seed is ⍬, Dyalog is able to take advantage of certain optimisations which
deliver maximum performance. This is the best choice unless you require a repeatable
sequence.

Implementation Note:
⎕RL does not behave quite like a regular 2-element variable; it has its own rules relat-
ing to assignment and reference.

Reference
⎕RLreturns a 2-element vector whose second element identifies the scheme in use (0,
1 or 2).

Using RNG0, ⎕RL[1] is an integer which represents the seed for the next random
number in the sequence.

Chapter 3: Language Reference Changes 53

Using RNG1, the system internally retains a block of 312 64-bit numbers which are
used one by one to generate the results of roll and deal. When the first block of 312
have been used up, the system generates a second block. In this case, ⎕RL[1] is an
integer vector of 32-bit numbers of length 625 (the first is an index into the block of
312) which represents the internal state of the random number generator. This means
that, as with RNG0, you may save the value of ⎕RL in a variable and reassign it later.

Using RNG2, the seed is purely internal and ⎕RL[1] is always zilde.

Assignment
⎕RLmay only be assigned in its entirety. Indexed and selective assignment may not
be used to assign values to individual elements.

To preserve compatibility with Versions of Dyalog prior to Version 15.0 (in which
⎕RL specifies just the seed) if the value assigned to ⎕RL represents a valid seed for
the random number generator in use, it is taken to be the new seed. Otherwise, the
value assigned to ⎕RLmust be a 2-element vector, whose first item is the seed and
whose second item is 0, 1 or 2 and specifies the random number generator to be used
subsequently.

Examples
)CLEAR

clear ws
⎕RL←16807
10?10

4 1 6 5 2 9 7 10 3 8
5↑⊃⎕RL

10 0 16807 1819658750 ¯355441828
X←?1000⍴1000
5↑⊃⎕RL

100 ¯465541037 ¯1790786136 ¯205462449 996695303

⎕RL←16807
10?10

4 1 6 5 2 9 7 10 3 8
Y←?1000⍴1000
X≡Y

1
5↑⊃⎕RL

100 ¯465541037 ¯1790786136 ¯205462449 996695303

Chapter 3: Language Reference Changes 54

⎕RL←16807 0 ⍝ Select RNG0
⎕RL

16807 0
?9 9 9

2 7 5
?9

7
⎕RL

984943658 0

⎕RL←16807
?9 9 9

2 7 5
?9

7
⎕RL

984943658 0

⎕RL←16807 1 ⍝ Select RNG1
5↑⊃⎕RL

100 ¯465541037 ¯1790786136 ¯205462449 996695303

When you set the seed to 0, a random seed is created for you:

⎕RL←0 0
⎕RL

865618822 0
⎕RL←0
⎕RL

1100783275 0

This gives you a new, unpredictable random sequence yet it is repeatable because
you can see the actual seed after you set it:

?10⍴100
14 22 18 30 42 22 71 32 32 12

⎕RL←1100783275
?10⍴100

14 22 18 30 42 22 71 32 32 12

When you set the seed to zilde, you get the same random initialisation but you can’t
see the actual seed either:

⎕RL←⍬
⎕RL

0

Chapter 3: Language Reference Changes 55

Make Directory {R}←{X}⎕MKDIR Y

This function creates a new directory.

Y is a character vector or scalar containing a file name that conforms to the naming
rules of the host Operating System.

By default, the path specified by Ymust exist and the base name specified by Ymust
not exist (see File Name Parts on page 63), otherwise an error is signalled. The
optional left argument X is the numeric scalar 0, 1, 2 or 3 which amends this beha-
viour as shown in the following table. If omitted, it is assumed to be 0.

0 Default behaviour.

1
No action is taken if the directory specified by Y already exists. The return
value may be used to determine whether a new directory was created or
not.

2
Any part of the path specified in Y which does not already exist will be
created in preparation of creating Y itself.

3 Combination of 1 and 2.

The shy result R is 1 if a directory was created otherwise it is 0.

Examples
⎕NEXISTS '\Users\Pete\Documents\temp'

0
⎕←⎕MKDIR '\Users\Pete\Documents\temp'

1
⎕←⎕MKDIR '\Users\Pete\Documents\temp'

FILE NAME ERROR: Directory exists
⎕←⎕MKDIR'\Users\Pete\Documents\temp'

∧

⎕←⎕MKDIR'\Users\Pete\Documents\temp\t1\t2'
FILE NAME ERROR: Unable to create directory ("The system
cannot find the path specified.")

⎕←⎕MKDIR'\Users\Pete\Documents\temp\t1\t2'
∧

⎕←2 ⎕MKDIR'\Users\Pete\Documents\temp\t1\t2'
1

Chapter 3: Language Reference Changes 56

Native File Delete {R}←{X}⎕NDELETE Y

This function deletes a file or a directory.

Y is a character vector or scalar containing a file name that conforms to the naming
rules of the host Operating System.

The optional left argument X is a numeric scalar; valid values are shown in the fol-
lowing table. If omitted, its default value is 0.

0 The file or directory with the given name must exist.

1
If the file or directory with the given name does not exist then no action is
taken. The result R may be used to determine whether the file or directory
was deleted or not.

The shy result R is 1 if the file or directory was deleted otherwise it is 0.

If Y is the name of a symbolic link, ⎕NDELETE deletes that symbolic link; the target
of the symbolic link is unaffected.

Examples
⎕NEXISTS'\Users\Pete\Documents\temp\t1\t2'

1
⎕←⎕NDELETE'\Users\Pete\Documents\temp\t1\t2'

1
⎕←⎕NDELETE'\Users\Pete\Documents\temp\t1\t2'

FILE NAME ERROR: Invalid file or directory name ("The
system cannot find the file specified.")

⎕←⎕NDELETE'\Users\Pete\Documents\temp\t1\t2'
∧

⎕←1 ⎕NDELETE'\Users\Pete\Documents\temp\t1\t2'
0

If the file is in use or the current user is not authorised to delete it, ⎕NDELETE will
not succeed but will instead generate a FILE ACCESS ERROR.

Chapter 3: Language Reference Changes 57

Native File Exists R←⎕NEXISTS Y

This function reports whether or not a file or directory exists.

Y is a character vector or scalar containing a file name that conforms to the naming
rules of the host Operating System.

The result R is 1 if the file or directory specified by Y exists (can be accessed), oth-
erwise R is 0.

Example
⎕←⎕MKDIR'\Users\Pete\Documents\temp\t1\t2'

1
⎕NEXISTS'\Users\Pete\Documents\temp\t1\t2'

1
⎕NEXISTS'\Users\Pete\Documents\temp\t1\t2\pd'

0

Note: If Y is a symbolic link, ⎕NEXISTS will return 1 whether or not the target of the
symbolic link exists.

Chapter 3: Language Reference Changes 58

Read Text File R←{X} ⎕NGET Y

This function reads the contents of the specified text file. See also Write Text File on
page 65.

Y is either a character vector/scalar containing the name of the file to be read, or a 2-
item vector whose first item is the file name and whose second is an integer scalar spe-
cifying flags for the operation.

If flags is 0 (the default value if omitted) the content in the result R is a character
vector. If flags is 1 the result is a nested array of character vectors corresponding to
the lines in the file.

The optional left-argument X is a character vector that specifies the file-encoding:

Table 2: File Encodings
Encoding Description

UTF-8 The data is encoded as UTF-8 format.

UTF-16LE The data is encoded as UTF-16 little-endian format.

UTF-16BE The data is encoded as UTF-16 big-endian format.

UTF-16
The data is encoded as UTF-16 with the endianness of the host
system (currently BE on AIX platforms, LE on all others).

UTF-32LE The data is encoded as UTF-32 little-endian format.

UTF-32BE The data is encoded as UTF-32 big-endian format.

UTF-32
The data is encoded as UTF-32 with the endianness of the host
system (currently BE on AIX platforms, LE on all others).

ASCII The data is encoded as 7-bit ASCII format.

Windows-
1252

The data is encoded as 8-bit Windows-1252 format.

ANSI ANSI is a synonym of Windows-1252.

The above UTF formats may be qualified with -BOM or -NOBOM (e.g. UTF-8-
BOM). SeeWrite Text File on page 65.

Whether or not X is specified, if the start of the file contains a recognised Byte Order
Mark (BOM) , the file is decoded according to the BOM. Otherwise, if X is specified
the file is decoded according to the value of X. Otherwise, the file is examined to try
to decide its encoding and is decoded accordingly.

Chapter 3: Language Reference Changes 59

The result R is a 3-element vector comprising (content) (encoding)
(newline) where:

content
A simple character vector, or a vector of character vectors,
according to the value of flags.

encoding

The encoding that was actually used to read the file. If this is a
UTF format, it will always include the appropriate endianess
(except for UTF-8 to which endiness doesn't apply) and a -
BOM or -NOBOM suffix to indicate whether or not a BOM is
actually present in the file. For example, UTF-16LE-BOM.

newline
Determined by the first occurrence in the file of one of the
newline characters identified in the line separator table, or ⍬ if
no such line separator is found.

If content is simple then all its line separators (listed in the table below) are
replaced by (normalised to) ⎕UCS 10, which in the Classic Edition must be in ⎕AVU
(else TRANSLATION ERROR).

If content is nested, it is formed by splitting the contents of the file on the occur-
rence of any of the line separators shown in the table below. These line separators are
removed.

The 3rd element of the result newline is a numeric vector from the Value column of
the table below corresponding to the first occurrence of any of the newline char-
acters in the file. If none of these characters are present, the value is ⍬.

Table 3: Line separators:
Value Code Description

newline characters

13 CR Carriage Return (U+000D)

10 LF Line Feed (U+000A)

13 10 CRLF Carriage Return followed by Line Feed

133 NEL New Line (U+0085)

other line separator characters

11 VT Vertical Tab (U+000B)

12 FF Form Feed (U+000C)

8232 LS Line Separator (U+2028)

8233 PS Paragraph Separator (U+2029)

Chapter 3: Language Reference Changes 60

Native File Information R←{X}⎕NINFO Y

This function returns information about one or more files or directories.

Ymay either be a numeric scalar containing the tie number of a native file, or a char-
acter vector or scalar containing a file name that conforms to the naming rules of the
host Operating System.

This function may be applied using the Variant operator with two options; Wildcard
(the Principal option) and Follow. The default value forWildcard is 0, and for Follow
is 1.

If Wildcard is 1, the part of Y that specifies the base name and extension (see File
Name Parts on page 63), may also contain the wildcard characters "?" and "*" and
potentially identifies more than one file. An asterisk is a substitute for any 0 or more
characters in a file name or extension; a question-mark is a substitute for any single
character.

The Follow option affects the properties of a symbolic link If Follow is 1, the prop-
erties reported for a symbolic link are those of the target of the symbolic link; if Fol-
low is 0, they are of the symbolic link itself.

The optional left argument X is a simple numeric array containing values shown in
the following table.

X Property Default

0
Name of the file or directory, as a character vector. If Y is a tie
number then this is the name which the file was tied.

1

Type, as a numeric scalar:
0=Not known
1=Directory
2=Regular file
3=Character device
4=Symbolic link (only when Follow is 0)
5=Block device
6=FIFO (not Windows)
7=Socket (not Windows)

0

2 Size in bytes, as a numeric scalar 0

3 Last modification time, as a timestamp in ⎕TS format 7⍴0

4
Owner user id, as a character vector – on Windows a SID, on
other platforms a numeric userid converted to character format ''

Chapter 3: Language Reference Changes 61

X Property Default

5 Owner name, as a character vector ''

6

Whether the file or directory is hidden (1) or not (0), as a numeric
scalar. On Windows, file properties include a "hidden" attribute;
on non-Windows platforms a file or directory is implicitly
considered to be hidden if its name begins with a ".".

¯1

7 Target of symbolic link (when Type is 4). ''

Each value in X identifies a property of the file(s) or directory(ies) identified by Y
whose value is to be returned in the result R. If omitted, the default value of X is 0.
Values in Xmay be specified in any order and duplicates are allowed. A value in X
which is not defined in the table above will not generate an error but results in a ⍬
(Zilde) in the corresponding element of R.

R is the same shape as X and each element contains value(s) determined by the prop-
erty specified in the corresponding element in X. The depth of R depends upon
whether or not the Wildcard option is enabled. If, for any reason, the function is
unable to obtain a property value, (for example, if the file is in use exclusively by
another process) the default value shown in the last column is returned instead.

If the Wildcard option is not enabled (the default) then Y specifies exactly one file or
directory and must exist. In this case each element in R is a single property value for
that file. If the name in Y does not exist, the function signals an error. On non-Win-
dows platforms "*" and "?" are treated as normal characters. On Windows an error
will be signalled since neither "*" nor "?" are valid characters for file or directory
names.

If the Wildcard option is enabled, zero or more files and/or directories may match the
pattern in Y. In this case each element in R is a vector of property values for each of
the files; Note that no error will be signalled if no files match the pattern.

When using the Wildcard option, matching of names is done case insensitively on
Windows and OSX, and case sensitively on other platforms. The names '.' and '..' are
excluded from any matches. The order in which the names match is not defined.

Chapter 3: Language Reference Changes 62

Examples
(0 1 2) ⎕NINFO 'c:\Users\Pete\Documents'

┌→───────────────────────────────────┐
│ ┌→──────────────────────┐ │
│ │c:/Users/Pete/Documents│ 1 163840 │
│ └───────────────────────┘ │
└∊───────────────────────────────────┘

⊃1⎕NPARTS ''
c:/Users/Pete/

(⎕NINFO⍠1)'D*'
┌─────────────────────────────────────┐
│┌───────┬─────────┬─────────┬───────┐│
││Desktop│Documents│Downloads│Dropbox││
│└───────┴─────────┴─────────┴───────┘│
└─────────────────────────────────────┘

(⎕NINFO⍠1)'Documents*.zip'
┌──────────────────────┐
│┌────────────────────┐│
││Documents/dyalog.zip││
│└────────────────────┘│
└──────────────────────┘

⍪ (0,⍳6) ⎕NINFO 'Documents\dyalog.zip'
┌──┐
│Documents/dyalog.zip │
├──┤
│2 │
├──┤
│3429284 │
├──┤
│2016 1 22 16 43 58 0 │
├──┤
│S-1-5-21-2756282986-1198856910-2233986399-1001│
├──┤
│HP\Pete │
├──┤
│0 │
└──┘

Chapter 3: Language Reference Changes 63

File Name Parts R←{X} ⎕NPARTS Y

Splits a file name into its constituent parts.

Y is a character vector or scalar containing a file name that conforms to the naming
rules of the host Operating System. The file need not exist; indeed this system func-
tion makes no attempt to identify or locate it.

The optional left-argument X specifies whether or not the file name specified by Y is
normalised before being processed. The default value 0 means no normalisation; 1
means normalise as follows:

l Pathnames are made absolute.
l On Windows, all "\" directory separators are changed to "/".
l The resultant name is simplified by removing extraneous directory sep-
arators etc. On Windows, this includes resolving occurrences of "." and ".."
within the name. On non-Windows platforms single "." are removed. Note
that ".." and symbolic links interact differently on Windows to other plat-
forms; on other platforms they cannot be removed without reference to the
file system itself and are left in place.

The result R is a 3-element vector of character vectors as follows:

[1] path

[2] base name

[3] extension

The path identifies the directory in which the file exists.

The base name is the name of the file stripped of its path and extension, if any.

The extension is the file extension including the leading ".".

Chapter 3: Language Reference Changes 64

Examples
⎕CMD 'CD'⍝ Current working directory

c:\Users\Pete

1 ⎕NPARTS 'α'
┌→─────────────────────────┐
│ ┌→─────────────┐ ┌→┐ ┌⊖┐ │
│ │c:/Users/Pete/│ │α│ │ │ │
│ └──────────────┘ └─┘ └─┘ │
└∊─────────────────────────┘

1 ⎕NPARTS '\Users\Pete\Documents\dyalog.zip'
┌→───┐
│ ┌→───────────────────────┐ ┌→─────┐ ┌→───┐ │
│ │C:/Users/Pete/Documents/│ │dyalog│ │.zip│ │
│ └────────────────────────┘ └──────┘ └────┘ │
└∊───┘

⊃'.'⎕wg'APLVersion'
AIX-64

1 ⎕nparts'/home/andys/./..'
┌────────────┬──┬┐
│/home/andys/│..││
└────────────┴──┴┘

Note that ⊃1 ⎕NPARTS '' returns the current working directory.

⊃1 ⎕NPARTS ''
┌→─────────────┐
│c:/Users/Pete/│
└──────────────┘

Chapter 3: Language Reference Changes 65

Write Text File {R}←X ⎕NPUT Y

This function writes character data to a text file. See also Read Text File on page 58.

Y is either a simple character vector or scalar containing the name of the file to be
written, or a 2-item vector whose first item is the file name and whose second is an
integer scalar specifying flags for the operation.

If flags is 0 (the default value if omitted) the file will not be overwritten if it
already exists and ⎕NPUT will signal an error. If flags is 1 the file will be written
regardless.

The left-argument X is comprised of 1, 2 or 3 items which identify (content)
(encoding) (newline) respectively.

content is either a vector of character vectors, each of which represents a line in the
file to be written, or a simple character vector.

If specified, encoding is a character vector from the first column in the table File
Encodings on page 58. If encoding specifies a UTF format, it may be be qualified
with -BOM (e.g. UTF-8-BOM), which causes a Byte OrderMark (BOM) to be writ-
ten at the beginning of the file or -NOBOM which does not. If the -BOM or -
NOBOM suffix is omitted, UTF-8 defaults to UTF-8-NOBOM, while the other UTF
formats default to -BOM.

If omitted, encoding defaults to UTF-8-NOBOM.

If specified, newline is numeric and is either ⍬ or a scalar or vector from the column
labelled Value in the newline characters section of the table Line separators: on
page 59. Any other value causes DOMAIN ERROR. If newline is omitted it defaults
to (13 10) on Windows and 10 on other platforms.

If content is nested, each element is considered to be to a logical line in the file,
and when the file is written, a line separator character corresponding to newline is
appended to each and every element, i.e. the data written to the file (excluding the
BOM) is:

∊content,¨⊂⎕UCS newline

If content is simple each and every LF (⎕UCS 10) character that it contains is first
replaced by the character corresponding to newline. If not present, one
LF character is added to the end of the array prior to these replacements.

Chapter 3: Language Reference Changes 66

In both cases, any other line separator characters are written as is to the file. This
allows the APL programmer to insert other line endings if so desired.

If content contains anything other than a character vector or scalar (or these, nested)
then a DOMAIN ERROR is signalled.

The shy result R is the number of bytes written to the file.

Note that when content is a vector of character vectors and encoding is omitted;
it is necessary to enclose the left argument.

Example:
txt←'mene' 'mene' 'tekel' 'upharsin'
⎕←(⊂txt) ⎕NPUT 'writing.txt'

25

Whereas:
txt ⎕NPUT 'writing.txt'

LENGTH ERROR: Left argument should be content, optional
encoding and optional line ending

txt ⎕NPUT'writing.txt'
∧

Chapter 4: I-Beam Reference Changes 67

Chapter 4:

I-Beam Reference Changes

I-Beam Changes
In the following tables, A is an integer that specifies the type of operation to be per-
formed.

The column labelled O/S indicates if a function applies only on Windows (W) or
only on non-Windows (X) platforms.

I-beam functionality added to Version 15.0.

A Derived Function O/S

180 Canonical Representation

400 Compiler Control

600 Trap Control

819 Case Convert

1500 Hash Array

2014 Remove Data Binding W

2016 Create .NET Delegate W

2041 Override COM Defrault Value W

2501 Discard thread on exit W

2502 Discard parked threads W

3502 Manage RIDE Connections

5176 List Loaded Files

5177 List Loaded File Objects

8415 Singular Value Decomposition

Chapter 4: I-Beam Reference Changes 68

Error Messages
When attempting to use I-Beamwith an unsupported operation value, Version 15.0
now reports three different error messages:

l Invalid I-Beam function selection
l I-Beam function xxx has been withdrawn
l I-Beam function xxx is not supported by this interpreter

This allows the user to distinguish between operation values that have never been
used, those that have been used in earlier versions but are no longer included in the
current version, and those that are valid in other editions or on other platforms other
than the current interpreter.

Chapter 4: I-Beam Reference Changes 69

Canonical Representation R←180⌶Y

This function is the same as the system function ⎕CR except that it can be used to
obtain the canonical representation of methods in classes. 180⌶ is used by
]PROFILE.

Example
)load ComponentFile

C:\Program Files\Dyalog\Dyalog APL-64 15.0 Unicode\...

180⌶'ComponentFile.Close'
Close
:Implements Destructor
:If tie∊⎕FNUMS

:If temp ⋄ Name ⎕FERASE tie
:Else ⋄ ⎕FUNTIE tie
:EndIf

:EndIf

Chapter 4: I-Beam Reference Changes 70

Compiler Control R←{X}(400⌶)Y

Controls the actions of the Compiler. For further information, see Compiler User
Guide.

The optional left-argument Xmust be one of the following:

X Description

0 Set automatic compilation options (default)

1
Determine whether the function/operator Y has been successfully
compiled

2 Compile the function/operator Y

3 Discard compiled form of the function/operator Y

4 Show bytecode for the compiled function/operator Y

nsref
Compile the function/operator Y using user-defined callbacks in this
namespace to provide information about global names

The nature of Y and R depend on the value of X as follows:

X=0 : Control Automatic Compilation (default)
Ymust be an integer 0, 1, 2, or 3.

Y Description

0 disable automatic compilation (initial setting)

1
compile functions when they are fixed (with ⎕FX or from the function
editor)

2 compile operators the first time they are executed

3
compile functions when they are fixed (with ⎕FX or from the function
editor) and compile operators the first time they are executed

The result R is the previous value of Y.

The automatic compilation setting is maintained within the workspace, and is saved
and loaded with the workspace.

Chapter 4: I-Beam Reference Changes 71

X=1: Query Compilation State
Ymust be a character vector, matrix or vector of vectors specifying the name of a func-
tion or operator or a list of such names.

The result R is a Boolean scalar or vector, with the value 1 if the corresponding func-
tion/operator has been successfully compiled or 0 if it has not.

X=2: Compile
Ymust be a character vector, matrix or vector of vectors specifying the name of a func-
tion or operator or a list of such names that should be compiled.

The result R is a matrix of diagnostic information or, if Y was either a matrix or a vec-
tor of vectors, a vector of such matrices. Each row of the matrix describes a problem
that caused the compilation to fail, with four columns corresponding to:

1. the APL error number
2. the line number in the function/operator
3. the column number (currently always 0)
4. the error message

If the matrix R has zero rows then the compilation was successful.

If this mechanism is used to compile operators, then the compiled bytecode will
assume that the operator's operands are functions rather than arrays. At run time, the
operands will be checked – if they are functions then the compiled bytecode will be
used, otherwise the operator will be interpreted.

X=3: Discard Compiled Form
If Y is empty, discard any compiled bytecode for all functions and operators in the
workspace. If Y is a character vector, matrix or vector of vectors specifying the name
of a function or operator or a list of such names, discard any compiled bytecode for
the name(s) specified by Y. R is always 0

X=4: Show Bytecode
Ymust be a character vector, matrix or vector of vectors specifying the name of a func-
tion or operator or a list of such names.

The result R is a multi-line string (that is, a character vector with embedded newlines)
or, if Y was either a matrix or a vector of vectors, a vector of such strings. Each string
is a human-readable representation of the bytecode of a compiled function or oper-
ator.

This functionality is provided for information and diagnostic purposes only. The
human-readable form of the bytecode is subject to change at any time.

Chapter 4: I-Beam Reference Changes 72

X is a namespace reference: Compile With Callbacks
Ymust be a character vector, matrix or vector of vectors specifying the name of a func-
tion or operator or a list of such names. The specified functions or operators are com-
piled in the same way as when X = 2 except that the compiler uses the user-defined
callback functions in the namespace X to obtain information about global names. The
namespace X can contain any or all of following callback functions:

Callback Description

quadNC

analogous to the system function ⎕NC. When applied
monadically to an enclosed character vector it should return the
detailed name class of that name. For example, given the name
of a global dfn it should return the value 3.2.

quadAT

analogous to the system function ⎕AT. When applied
monadically to an enclosed character vector it should return a 1
by 4 matrix whose first item is a vector of 3 integers describing
(respectively) the result, function valence and operator valence
of the name.

getValue

used to obtain the value of global constants. When applied
monadically to a character vector that is a global constant it
should return the enclose of the constant value, otherwise it
returns ⍬.

Each of these callback functions returns information about names that should be guar-
anteed to exist when the compiled functions are executed. The compiler assumes that
the information returned by the callbacks is correct, and generates bytecode accord-
ingly. In the case of quadNC and quadAT, if the information returned by the call-
backs turns out not to be correct when the compiled function is executed, then a
runtime error is generated.

The result R is a matrix of diagnostic information or, if Y was either a matrix or a vec-
tor of vectors, a vector of such matrices. Each row of the matrix describes a problem
that caused the compilation to fail, with four columns corresponding to:

1. the APL error number
2. the line number in the function/operator
3. the column number (currently always 0)
4. the error message

If the matrix R has zero rows then the compilation was successful.

Chapter 4: I-Beam Reference Changes 73

Trap Control R←600⌶Y

This function is used to temporarily disable the error trapping mechanism used by
:Trap and ⎕TRAP. This can be useful in debugging applications.

Y is an integer 0, 1 or 2 as shown in the following table.

R is the previous value (0, 1, or 2) of the trap state.

Y Effect

0 Enable all traps.

1 Disable all traps.

2
Disable traps in suspended functions from triggering when an error is
generated in the Session.

Note that the Disable traps in session option of the Session Optionsmenu performs
the same tasks as (600⌶0) and (600⌶2).

For error-guards in dfns 600⌶0 and 600⌶2 are equivalent; in neither case is an error
generated in the session caught by an error guard in a suspended dfn.

Chapter 4: I-Beam Reference Changes 74

Case Convert R←{X}(819⌶)Y

Converts character data in Y to upper or lower-case. This function is considerably
faster than any comparable function coded in APL, especially on nested arrays.

This function is Unicode only and is not available in the Classic variants of
Dyalog.

Ymay be any array of arbitrary depth so long as all the elements are characters.

The optional left-argument X is 0 (convert to lower-case) or 1 (convert to upper-case).
If omitted, the default is 0.

The result R has the same structure as Y but each character element is case folded to
upper or lower case.

Characters are converted per the default case mappings specified by The Unicode
Consortium, described at:

ftp://ftp.unicode.org/Public/3.0-Update/UnicodeData-3.0.0.html

and using the table at:

http://unicode.org/Public/UNIDATA/UnicodeData.txt

If conversion is being used to do case-insensitive character comparisons then con-
verting everything to lower case is generally preferable to converting everything to
upper. This is because converting to lower case can be faster.

Examples
(819⌶) 'How many Roads must a man walk down'

how many roads must a man walk down
1 (819⌶) 'How many Roads must a man walk down'

HOW MANY ROADS MUST A MAN WALK DOWN

data←1000⍴⊂'Hello there.'
lc_data←819⌶ data
4↑lc_data

hello there. hello there. hello there. hello there.

Chapter 4: I-Beam Reference Changes 75

Hash Array R←{X}1500⌶Y

This function creates a hashed array, returns an unhashed copy of an array or reports
the state of hashing of an array.

Ymay be any array.

If X is omitted, the result R is a copy of Y that has been invisibly marked as hashed. R
behaves the same as Y in all respects. The only difference is that dyadic ⍳ and related
functions are expected to run faster when applied to a hashed array. The hash will be
created the first time the array is used as an argument to ⍳ or other set functions. The
hashed property is preserved across assignments and argument passing, but in general
is not preserved by any primitive functions.

If X is 1, the result R returns an indication of whether Y has been marked for hashing
or whether the hash has been created:

R State of Y

0 Y has not been marked for hashing

1
Y has been marked for hashing, but the hash tables has not yet been
created

2 Y has a hash table

If X is 2, the result R is the unhashed form of Y.

Examples:
R←1500⌶1 2 3 ⍝ R is marked for hashing

1 (1500⌶)R
1

S←R ⍝ S is marked for hashing
{⍵⍳2 3 5}R ⍝ R is now hashed
1 (1500⌶)R

2
U←(⍴R)⍴R ⍝ U is not hashed
U←⊃⊂R ⍝ ditto
1 (1500⌶)U

0

If R is a hashed array then certain forms of modified assignment will preserve and effi-
ciently update the hash table:

R,←Y ⍝ only for scalar or vector R
R⍪←Y
R↓⍨←Y ⍝ only for negative singleton Y

Chapter 4: I-Beam Reference Changes 76

Examples:
R←1500⌶1 2 3 ⍝ R is hashed

R,←5 ⍝ ,← preserves and updates
⍝ the hash table

R
1 2 3 5

R⍳2 4 6
2 5 5

R↓⍨←¯2 ⍝ ↓⍨← preserves and updates
⍝ the hash table

R
1 2

R⍳2 4 6
2 3 3

The hashed property survives)SAVE/)LOAD and)SAVE/)COPY. It does not cur-
rently survive writing to a component file and reading back again.

Chapter 4: I-Beam Reference Changes 77

Remove Data Binding R←2014⌶Y

Windows only.

This function disassociates a data-bound variable from its data binding source.

Y is any array.

If Y or an element of Y is a character vector that contains the name of a data-bound
variable, that variable is dissociated from its data binding source.

The result R is always 1.

Example
2014⌶'txtSource'

1

Chapter 4: I-Beam Reference Changes 78

Create .NET Delegate R←2016⌶Y

Windows only.

.NET methods (and properties) may specify a parameter to be a delegate. A delegate
is a place holder for a function, normally with a particular signature and result type,
that should be supplied when the method is called. Sometimes the signature of a
.NET method that takes a delegate as a parameter does not provide enough inform-
ation for Dyalog to determine automatically what type of delegate is required.
2016⌶ allows you to specify the type so that Dyalog can perform the necessary con-
version(s) at run-time.

Y is a 2-element array. The first element is a .NET type that inherits from the abstract
.NET Class System.Delegate. The second item is either the name of or the ⎕OR
of an APL function which is to be invoked via a .NET method or property.

The result R is a ref to an instance of a .NET type specified by the first element of Y,
which internally is associated with the function identified by the second element of
Y.

Example
∇foo∇

∇ foo(ev arg)
[1] ⍝ Callback for .NET method

∇
⎕USING←'System'
del←2016⌶ EventHandler'foo'
del

System.EventHandler

Then, when calling a .NET method that requires a Delegate of type
System.Eventhandler, but whose signature is imprecise in this respect, the
object del should be used instead.

Chapter 4: I-Beam Reference Changes 79

Discard Thread on Exit R←2501⌶Y

APL threads that Dyalog creates to serve incoming .NET requests are not terminated
when their work is done. They persist so that if another call comes in on the same
.NET thread the same APL thread can handle it. In effect the thread is parked until it
is needed again. If the thread is not required, there is a small performance cost in main-
taining it in this state.

(2501⌶0)must be called fromWITHIN one of these threads and tells the inter-
preter NOT to park the thread on termination, but to discard the thread completely.

Discard Parked Threads R←2502⌶Y

APL threads that Dyalog creates to serve incoming .NET requests are not terminated
when their work is done. They persist so that if another call comes in on the same
.NET thread the same APL thread can handle it. In effect the thread is parked until it
is needed again. If the thread is not required, there is a small performance cost in main-
taining it in this state.

(2502⌶0) removes all parked threads from the workspace.

Chapter 4: I-Beam Reference Changes 80

Manage RIDE Connections R←3502⌶Y

3502⌶ gives control over RIDE connections to the interpreter. More details about
RIDE can be found in the RIDE User Guide. This I-Beam has been significantly
changed in version 15.0.

Ymay be either 0 or 1 or a simple character vector.

R has the value 0 if the call to 3502⌶ was successful; if unsuccessful the value may
be either a positive or negative integer.

If Y is 0, then any active RIDE connections are disconnected, and no future con-
nections may be made.

If Y is 1, then the interpreter attempts to enable RIDE, using the value of the ini-
tialisation string to determine the connection details. If the current initialisation
string is ill-defined, or the RIDE DLL/shared library is not available, then R will be
non-zero.

If Y is a character vector and RIDE is currently disabled, then the current ini-
tialisation string is unconditionally replaced by the contents of Y. If RIDE is cur-
rently enabled, the initialisation string is not replaced, and R will have the value ¯2.

The initialisation string has the same syntax as the value of the RIDE_INIT con-
figuration parameter which is described in the RIDE User Guide

If RIDE is currently disabled, and 3502⌶0 is called or if RIDE is currently enabled
and 3502⌶1 is called, no action is taken and R will have the value ¯1.

The configuration parameterRIDE_INIT can still be used to establish the initial
value of the RIDE initialisation string.

The runtime interpreter has RIDE disabled by default, whether or not RIDE_INIT is
set; the only method of enabling RIDE in a runtime interpreter is to call 3502⌶1.

IfRIDE_INIT is set when a development interpreter is called, RIDE will be enabled
provided that the RIDE DLL/shared library is available and the RIDE_INIT variable
is properly formed. If the connection is of type SERVE the port must not be in use. If
any of these conditions are not met, then the interpreter fails with a non-zero exit
code. IfRIDE_INIT is not set then the development interpreter will start, but with
RIDE disabled. It is therefore possible to override the RIDE_INIT variable in the
development interpreter with code similar to:

r←3502⌶0 ⍝ Stop RIDE
r←3502⌶'SERVE::4511' ⍝ Update init string
r←3502⌶1 ⍝ Start RIDE

And similarly for altering the RIDE settings in an active APL session.

Chapter 4: I-Beam Reference Changes 81

Notes:
In 14.1 and earlier 3502⌶⍬ was used to enable RIDE; this value is still valid, albeit
deprecated: code should call 3502⌶1 instead.

Enabling the RIDE to access applications that use the run-time interpreter means that
the APL code of those applications can be accessed. The I-beammechanism
described above means that the APL code itself must grant the right for a RIDE client
to connect to the run-time interpreter. Although Dyalog Ltd might change the details
of this mechanism, the APL code will always need to grant connection rights. In par-
ticular, no mechanism that is only dependent on configuration parameters will be
implemented.

Chapter 4: I-Beam Reference Changes 82

Singular Value Decomposition R←(8415⌶)Y

Y is a simple numeric matrix.

The result R is a 4 element vector whose elements are as follows.

[1] U a unitary matrix

[2] S a diagonal matrix

[3] V a unitary matrix

[4] f a Boolean flag indicating whether the algorithm converged or not

This function computes a factorisation of the matrix Y such that:

M ≡ U +.× S +.× ⍉+V

This can be useful for analysing matrices for which ⌹ cannot compute an inverse,
because they are singular or nearly singular.

For further information, see https://en.wikipedia.org/wiki/Singular_value_decom-
position.

https://en.wikipedia.org/wiki/Singular_value_decomposition
https://en.wikipedia.org/wiki/Singular_value_decomposition

Chapter 5: Object Reference Changes 83

Chapter 5:

Object Reference Changes

GUI Enhancements
The following table summarises the main changes to GUI features in Version 15.0.

Name Change

DISPID

Native look and feel Default changed to enabled

GetFocusObj New method

SetEventInfo Enhanced to set DISPID

SetFnInfo Enhanced to set DISPID

SetPropertyInfo Enhanced to set DISPID

Chapter 5: Object Reference Changes 84

DISPID (Dispatch ID)
COM objects created by Dyalog (OLEServer and ActiveXControl objects) export
their members (methods, properties and events) using the standard IDispatch inter-
face.

Using this interface, a client application may discover the names and parameters of
the members supported by an object at run-time, and then access them by name.
Alternatively, a client application may compile references to the object's members in
advance using theirDispatch IDs orDISPIDs.

Prior to Version 14.1, Dyalog assigned all DISPIDs automatically1, making it imprac-
tical for them to be compiled into client applications.

FromVersion 14.1 onwards, the SetFnInfo, SetPropertyInfo and SetEventInfo meth-
ods allow the Dyalog programmer to assign DISPIDs so that they may be used dir-
ectly by client applications. The specified DISPID must be a non-zero integer. The
special value ¯1 causes Dyalog to assign the DISPID automatically as before.

Note
Each of the DISPIDs exported by a COM object must be unique. Furthermore, the
behaviour of a COM object with non-unique DISPIDs is undefined. Non-unique
DISPIDs may prevent the COM object from being registered (with or without gen-
erating an error) or may cause a run-time failure. If Dyalog assigns all the DISPIDs of
an object, they will be unique. If you choose to allocate your own DISPIDs to any of
the members of a Dyalog COM object, the responsibility to ensure that they are all
unique is yours. In this case, Dyalog does not guarantee nor check for uniqueness.

1An automatically assigned DISPID is its index into the list of the names of the object's members in
alphabetic order, and may therefore change when this list is altered in any way.

Chapter 5: Object Reference Changes 85

GetFocusObj Method 509

Applies To: ActiveXControl, Animation, Button, ButtonEdit, Calendar,
ColorButton, Combo, ComboEx, CoolBar, DateTimePicker, Edit,
Form, Grid, Group, Label, List, ListView, MDIClient, ProgressBar,
PropertyPage, PropertySheet, RichEdit, Root, Scroll, SM, Spinner,
Static, StatusBar, SubForm, TabBar, TabControl, ToolBar,
ToolControl, TrackBar, TreeView, UpDown

Description

This method is used to obtain a ref to the object that currently has the input focus.

The GetFocusObj method is niladic.

The result is a ref. If there is no Dyalog APL GUI object with the input focus, the res-
ult is ⎕NULL.

See also: GetFocus on page 1.

Chapter 5: Object Reference Changes 86

SetEventInfo Method 547

Applies To: ActiveXControl, OLEServer

Description

This method is used to register an event that may be generated by an ActiveXControl
or OLEServer object.

A host application that wishes to attach a callback function to an event in a Dyalog
APL ActiveXControl or OLEServer, needs to know the name of the event and the
number and data types of any parameters that the event may supply. It also needs to
know the data type (if any) of the result that the callback function may be expected
to pass back to the control.

An ActiveXControl or OLEServer generates an event in the host application using 4
⎕NQ. The right argument is a vector whose first 2 elements are character vectors con-
taining the names of the ActiveXControl or OLEServer and the event respectively.
The parameters for the event are passed as additional elements in the argument.

Another way to think about it is that when you generate an event using 4 ⎕NQ, you
are effectively calling a function, of your specification, in the host application. To
enable the host application to accept the function call, it needs to know the number
of parameters that you will supply and their data types.

A further consideration is that if you specify that the data type of a parameter is a
pointer (e.g. 'VT_PTR TO I4') this will allow a callback function to modify the
parameter in-situ. If so, the result returned by 4 ⎕NQ will be the modified values of
any such parameters; this is a similar mechanism to ⎕NA.

The argument to SetEventInfo is a 1, 2, 3 or 4-element array as follows:

[1] Event name character vector

[2] Event info nested array (see below)

[3] Help ID integer

[4] DISPID integer. See DISPID (Dispatch ID) on page 84

Chapter 5: Object Reference Changes 87

Event info
Event info, specifies an optional help string which describes what the event does, the
data type of the result (if any) and the names and data types of its arguments.

If the event is fully described, each element of Event Info is a 2-element vector of
character vectors. The first element contains the help string and the COM data type of
the result that the callback function in the host application is expected to supply. Sub-
sequent elements contain the name and COM data type of each of the parameters sup-
plied by the event.

However, both the help string and the names of the parameters are optional and may
be omitted. If so, one or more elements of Event Info may be a simple character vec-
tor.

Help ID
This is an integer value that identifies the help context id for the event within the
help file associated with the HelpFile property of the ActiveXControl object. The
value ¯1means that no help is provided. APL stores this information in the registry
fromwhere it may be retrieved by the host application.

Example
The example Dual ActiveXControl, that is fully described elsewhere, generates a
ChangeValue1 event. This event occurs when the user moves the thumb in a Track-
Bar that is internal to an instance of the ActiveXControl.

The external ChangeValue1 event is fired by an internal APL callback function
(called ChangeValue) that is attached to ThumbDrag and Scroll events on the
TrackBar object. The internal callback function is :

[0] ChangeValue MSG
[1] ⍝ Callback for ThumbDrag and Scroll
[2] Value1←4 ⎕NQ'' 'ChangeValue1'(⊃¯1↑MSG)
[3] CalcValue2
[4] 'V1'⎕WS'Text'(⍕Value1)
[5] 'V2'⎕WS'Text'(⍕Value2)

Note that ChangeValue[2] generates the external ChangeValue1 event by invok-
ing 4 ⎕NQ, passing it the new value provided by the TrackBar. However, the host
application is permitted to modify that value, returning it in the result of 4 ⎕NQ. This
result, rather than the TrackBar value itself, is then used to update other (Label) con-
trols in the object.

Chapter 5: Object Reference Changes 88

The following statements were used to declare the ChangeValue1 event The event
provides a single parameter named Value1 that may be modified in-situ by a callback
function in the host application. The callback is not, otherwise, expected to return a
result.

INFO←⊂'Occurs when the value of the control is
changed' 'VT_VOID'

INFO,←⊂'Value1' 'VT_PTR TO VT_I4'
F.Dual.SetEventInfo 'ChangeValue1' INFO

If the host application was Visual Basic, a suitable callback function might be:

Private Sub Dual1_ChangeValue1(Value1 As Long)
Value1=2*(Value1\2)
End Sub

This callback function receives the proposed new value of the control as the para-
meter Value1, and modifies it, forcing it to be an even number.

Chapter 5: Object Reference Changes 89

SetFnInfo Method 545

Applies To: ActiveXControl, OLEServer

Description

This method is used to describe an APL function that is to be exported as a method, a
Property Get Function, or a Property Put Function of an ActiveXControl or
OLEServer object.

An exported function must be a niladic or monadic defined function (dfns and
derived functions are not allowed) and may optionally return a result. Ambivalent
functions (functions with optional left argument) are allowed, but will be called mon-
adically by the host application.

COM syntax differs from APL syntax in many ways and the SetFnInfo method is
required to declare an APL function to COM in terms that COM understands. In par-
ticular, although monadic APL functions take just one argument, COM functions
may take several parameters, and some may be optional.

A function exported by SetFnInfo will be called by a host application with the num-
ber of parameters that SetFnInfo has described. The argument received when the func-
tion is called by a host application, will be a nested vector of this length.

The argument to SetFnInfo is a 2, 3, 4, 5 or 6-element array as follows:

[1] Function name character vector

[2] Function info nested array (see below)

[3] Help ID integer

[4] Function type integer

[5] Property name character vector

[6] DISPID integer. See DISPID (Dispatch ID) on page 84

Chapter 5: Object Reference Changes 90

Function info
This specifies an optional help string which describes what the function does, the
data type of the result (if any) and the names and data types of its arguments.

If the function syntax is fully described, each element of Function Info is a 2-element
vector of character vectors. The first element contains the help string and the COM
data type of the function's result. Subsequent elements contain the name and COM
data type of each parameter.

However, both the help string and the names of the parameters are optional and may
be omitted. If so, one or more elements of Function Info may be a simple character
vector.

Consider a very basic function ADD in an ActiveXControl called F.dbase, that is
designed to add a record to a personnel database. The database consists only of a list
of names, ages and addresses.

Function ADD expects to be called with a name (character string), age (number) and
address (character string), and returns a result 0 or 1 (Boolean) according to whether
the record was successfully added. This function could be declared as follows:

HELP←'Adds a new record to the personnel database'
SPEC←⊂(HELP 'VT_BOOL') ⍝ Result is Boolean
SPEC,←⊂('Name' 'VT_BSTR') ⍝ 1st param called

'Name' is a string
SPEC,←⊂('Age' 'VT_I4') ⍝ 2nd param called

'Age' is an integer
SPEC,←⊂('Address' 'VT_BSTR')⍝ 3rd param called

'Address' is a string

F.dbase.SetFnInfo 'ADD' SPEC

Alternatively, but much less helpfully, the function could be declared to take a single
unnamed nested argument, leaving it to the host application programmer to guess at
its structure :

SPEC←⊂('' 'VT_BOOL') ⍝ No help string,
result is Boolean

SPEC,←⊂('' 'VT_ARRAY OF VT_VARIANT') ⍝ Param is a
nested array

F.dbase.SetFnInfo 'ADD'SPEC

Chapter 5: Object Reference Changes 91

Help ID
This is an integer value that identifies the help context id within the help file asso-
ciated with the HelpFile property of the ActiveXControl object. The value ¯1means
that no help is provided. APL stores this information in the registry fromwhere it
may be retrieved by the host application.

Function type
This specifies the type of function being exported. This is an integer with one of the
following values:

1 Function is a method

2 Function is a property get function

4 Function is a property put function

In both these last two cases, the name of the property, which is totally independent of
the name of the APL function, is given as Property name.

If omitted, the function type ismethod.

Chapter 5: Object Reference Changes 92

SetPropertyInfo Method 554

Applies To: OCXClass, OLEClient

Description

This method is used to redefine a property that is exported by a COM object. SetProp-
ertyInfo is used to override the information provided by the object's Type Library.

The argument to SetPropertyInfo is a 2 or 3-element array as follows:

[1] Property name character vector

[2] Property info nested vector

[3] Property function integer

[4] DISPID integer. See DISPID (Dispatch ID) on page 84

For example, the Visible property exported by Excel.Application has the data type
VT_BOOL and may be declared as follows:

'EX' ⎕WC 'OLEClient' 'Excel.Application'
EX.SetPropertyInfo 'Visible' 'VT_BOOL'

Property function may be required if the property value is retrieved or set via a func-
tion. This typically applies if the property takes parameters and will result in the prop-
erty being fixed as a function rather than as a variable. Such properties may have a
PropertyGet function, a PropertyPut function and/or a PropertyPutByReference func-
tion. If so, it is necessary to say to which of these three functions the details apply.
The value of Property function is an integer 2 (PropertyGet), 4 (PropertyPut), or 8
(PropertyPutByReference).

For example, the following statement declares the PropertyGet function for the Item
property of the Fields collection of the OLE object DAO.DBEngine. This property
takes an index (into the collection) and returns an object.

Fields.SetPropertyInfo 'Item'('VT_DISPATCH' 'VT_
I4')2

Chapter 6: UNIX Specific Features 93

Chapter 6:

UNIX Specific Features

Summary
This section summarises the changes specific to Dyalog APL Version 15.0 on UNIX-
based platforms. This list currently consists of:

l AIX
l Linux (including the Raspberry Pi)
l OS X

Hardware Requirements
AIX and Linux
For AIX, Version 15.0 requires AIX 6.1 or higher, and a POWER5 chip or higher.

For x86 and x86-64 Linux, Version 15.0 is built on RedHat 6, and runs on all recent
distributions, including Ubuntu 14.01 and openSUSE 13.2. Contact Dyalog for
information about other platforms. Dyalog 15.0 on 32-bit Linux needs an Intel Pen-
tium 4 or better, or an AMD Opteron or Athlon 64 or better.

On the Raspberry Pi, Dyalog (32-bit Unicode) supports Raspbian Wheezy and Jessie.

Mac OS X
15.0 requires Mac OSX Yosemite onwards. The target Mac must have been intro-
duced in 2010 or later.

Chapter 6: UNIX Specific Features 94

Obtaining the exit code from ⎕SH
In Version 15.0, ⎕DMX.Message contains the exit code from all calls to ⎕SH which
result in an error:

z←⎕SH'exit 17'
DOMAIN ERROR

⎕DMX.Message
Command interpreter returned failure code 17

In previous versions of Dyalog APL it was necessary to use an expression such as

⎕SH'mycmd; echo $? ; exit 0'

to obtain the exit code.

Dyalog intends to return the exit code in a more usable form in a future version.

Suppressing error traps in the session
600⌶ allows the user to control what happens when an error is generated in the ses-
sion when there are functions suspended which have traps assigned.

UnderWindows this can be toggled using a MenuItem in the session; on non-Win-
dows platforms you must use 600⌶ to achieve the same result. Note that if SALT is
active, setting 600⌶0 (disable all traps everywhere) will result in the SALT-related
editor backend code suspending, which is undesirable. See the Dyalog Language
Reference or the I-Beam section of the online help for more information.

RIDE 3.0 and Dyalog APL 15.0
Note that Dyalog Version15.0 supports RIDE 3 only; RIDE 2 is not supported.

The Dyalog RIDE Reference Guide details how to configure the APL session to sup-
port the underscored alphabet; contact support@dyalog.com if you wish to be able to
generate key-chords which result in the underscored alphabet being entered into
APL.

Linux Window Managers and APL characters
If your Linux window manager does not include support for APL characters (Gnome
is an example), then the first time that you run Dyalog having started the window
manager afresh, you must run

$ dyalog -kbd

Subsequent invocations of dyalog should not require this flag.

Chapter 6: UNIX Specific Features 95

Change to event handling
The handling of events from "GUI" objects (TCPSockets and Timers) has been
altered in version 15.0 on non-Windows platforms to eliminate the possibility of
Dyalog hanging. In previous versions all GUI events were added to a pipe, and pro-
cessed only when ⎕DQ was called. This could lead to a situation where the pipe
filled, at which point Dyalog would hang. In version 15.0 the code has been changed
so that at the end of each line of APL code, any valid events are moved to an internal
APL message queue. This brings the non-Windows versions more in line with the
Windows version of Dyalog.

Chapter 6: UNIX Specific Features 96

Index 97

Index

A

aligning comments 41

B

base name 63
BOM 58, 65
Bug Fixes 21
byte order mark 58, 65

C

canonical representation 69
CFEXT parameter 34
classes

including script files 42
compiler control 70
create .NET delegate 78
current working directory 64

D

dfns 23
error guards 38, 73

discard parked threads 79
discard thread on exit 79
DISPID 84
dyalogdata4.5.dll 15

E

edit menu 40
editor

syntax menu 39
Editor

aligning comments 41
edit menu 40

syntax menu 39
view menu 41

error guards 38, 73
extension 63

F

file access error 56
file explorer integration 35
fix script 23

G

generating random numbers 51
GetFocusObj 85

H

hash array 2, 75

I

i-beam
canonical representation 69
compiler control 70
create .NET delegate 78
remove data binding 77

InEnc option 45
Interoperability 8

K

Key Features 1
key operator 11

M

Methods
GetFocusObj 85
SetEventInfo 86
SetFnInfo 89
SetPropertyInfo 92

Miscellaneous Enhancements 27
monadic primitive operators

reduce 48

Index 98

N

native file
read text 58
write text 65

Native Look and Feel 27
ndelete 56
nexists 57
nparts 63
null item 24

O

OutEnc option 45

P

path 63
Performance Improvements 17
primitive operators

reduce 48

R

random link 15, 51
rank operator 11
read text file 58
reduce operator 48
reduction operator

with axis 48
remove data binding 77
replace operator

InEnc 45
OutEnc 45

require statement 4, 42

S

search operator
InEnc 45
OutEnc 45

selective modified assignment 23
SetEventInfo 86
SetFnInfo 89
SetPropertyInfo 92

sharpplot workspace 15
singular value decomposition 82
symbolic link 56-57, 60-61
Syncfusion 15
syntax menu 39
System Requirements 7

T

Trailing directory delimiters 16

V

variant operator 11
view menu 41

W

write text file 65
WSEXT Parameter 16

